Pohaku w FeMO Logo sm.jpg - 288721 Bytes

Dr. Craig Moyer's

Research & Laboratory Homepage

Craig L. Moyer
Biology Department
Western Washington University
Bellingham, WA 98225
Office: (360)650-7935
Fax: (360)650-3148
email: cmoyer@hydro.biol.wwu.edu
Curriculum Vitae

Brief Synopsis of Research and Educational Activities

My speciality is the marine microbial ecology and geomicrobiology of hydrothermal vent systems. I also maintain interests in terrestrial and aquatic microbial ecology, microbe-macrobe symbiotic relationships, bioremediation and microbial cycles that impact global climate change. My focus in recent years has been bimodal. First, is the study of microbial mats in and around hydrothermal vents, this includes the biodiversity and biogeography of the Zetaproteobacteria from several vent sites across the Pacific Ocean (with Sean McAllister, WWU) as well as the discovery and description of ultra-diffuse and ultra-deep vents as sites of massive umber deposits at the base of Loihi Seamount as part of the Iron Microbial Observatory or FeMO (with FeMO team members). In addition, I have been involved with the discovery of neutrophilic iron-oxidizing bacteria known as the Zetaproteobacteria, which have been formally accepted as a novel Proteobacterial class as of early 2017 (with David Emerson, Bigelow Labs), the demonstration that Zetaproteobacteria can act as pioneering colonizers in the formation of microbial mats (with Allen Rassa, WWU), and the detection of hyper-diverse microbial communities associated with deep-ocean basalts (with Cara Santelli, Univ Minn). My lab was also the first to describe multiple microbial mat communities associated with active submarine volcanoes along the Mariana Arc region (with Rick Davis, WWU). Beyond establishing the basic microbial census and phylogenetic information, we also identified that this area was a microbial hotspot with unusually high biodiversity and our discoveries were used to support the federal government's recommendation and eventual formation of the Mariana Marine Sanctuary, which is now a national monument in the Western Pacific. I was able to return to the Mariana region in 2014 as chief scientist where I led an expedition, the Submarine Ring of Fire "Ironman" cruise.

My lab's latest investigations have shown that in high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the microbial mat community, driving its structure and functioning as ecosystem engineers. We are presently monitoring the ecological changes associated with these microbial communities that have occurred after a major eruptive event using molecular microbial techniques including functional genomics coupled with fine-scale sampling (with Kelsey Jesser, WWU). Genome-resolved metagenomics allows for the specific binning of microbial genomes based on genomic signatures present in composite metagenome assemblies. Through this approach we have identified a Cyc2-like protein as the previously elusive site for iron oxidation (i.e., initial electron transfer) across the outer membrane of a majority of the Zetaproteobacteria (with Heather Fullerton, WWU). We have also used SSU rRNA high-throughput amplicon sequencing in coordination with geochemical analysis to show the functional role of the lithotrophically-driven communities associated with iron- and sulfur-rich hydrothermal venting along the Mariana Arc and back-arc. Higher diversity was observed in Zetaproteobacterial-dominated mats in addition to their altering the mat habitat and enhancing community interactions and complexity. Sampling scale was also shown to be an important consideration for estimating microbial diversity in these microbial mat communities (with Kevin Hager, WWU).

My lab's second research mode targets the deep subsurface biosphere. Currently, we are examining the occurrence of unique Zetaproteobacteria residing in the deep subsurface as part of the Integrated Ocean Drilling Program's (IODP) expedition 331 to hydrothermally active mounds in the Okinawa Trough (with Sean McAllister, WWU). Our accomplishments here also include the discovery of reductive dehalogenase homologous (rdhA) genes found in Cloroflexi from the deep subsurface biosphere through single cell genomics (with Heather Fullerton, WWU) and a description of the biogeography of Thermococcus isolates emanating from the subsurface (with Mark Price, WWU). We also continue to describe the community structure and diversity of extremophilic Archaea associated with deep-sea springs emanating pH 12.5 fluids that occur at the summit of mud volcanoes located along the Mariana Forearc (with Andrea Curtis, WWU). These microbial communities represent an upper boundary with respect to pH that life is known to exist on Earth and are fueled by serpentinization reactions occurring ~30 kilometers deep within the oceanic crust. To this end, I have just returned from participating in IODP expedition 366 (Mariana Convergent Margin), where I was able to collect deep subsurface samples with the goal of using targeted metagenomics. My goal is to elucidate the metabolic pathways of the extremophilic archaea associated with Forearc mud volcanoes that are undergoing anaerobic methane oxidation coupled with sulfate reduction most likely through novel metabolic pathways.

My educational activities include facilitating opportunities for both undergraduates and Master's level graduate students. I am also involved with educational outreach at both the elementary and secondary levels. Myself and my students have recently participated in both science fair and culture camp activities with high school and grade school students in Hydaburg, Alaska. My teaching here at Western focuses in the areas of cell biology, microbiology, molecular phylogeny, and microbial ecology.

Selected Recent Publications:

Hidden Diversity Revealed by Genome-Resolved Metagenomics of Iron-Oxidizing Microbial Mats from Loihi Seamount, Hawaii (ISME J, 2017 Early Online) & Supplemental Material

Evidence for Microbial Mediation of Subseafloor Nitrogen Redox Processes at Loihi Seamount, Hawaii (Geochim Cosmochim Acta, 2017)

Psychrophiles and Psychrotrophs (Reference Module of Life Sciences, 2017)

Silica Biomineralization of Calothrix-Dominated Biofacies from Queens Laundry Hot-Spring, Yellowstone National Park (Front Environ Sci, 2016)

Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep Subsurface Biosphere (Appl Environ Microbiol, 2016)

Hydrothermal Venting and Mineralization in the Crater of Kick'em Jenny Submarine Volcano (Geochem Geophys Geosyst, 2016)

Draft Genome Sequence of Mariprofundus ferrooxydans Strain JV-1, Isolated from Loihi Seamount, Hawaii (Genome Announcements, 2015)

Biogeography and Evolution of Thermococcus Isolates from Hydrothermal Vent Systems of the Pacific (Front Microbiol, 2015)

QPCR Analysis of Functional Genes in Iron-Rich Microbial Mats at an Active Hydrothermal Vent System (Appl Environ Microbiol, 2015)

The effects of ocean acidity and elevated temperature on bacterioplankton community structure and metabolism (Open J Ecol, 2014)

The first micro contamination assessment by the D/V Chikyu at Iheya North (IODP Exp 331) (Front Microbiol, 2013)

Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount (FEMS Microb Ecol, 2013)

Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic Archaea (Geomicro J, 2013)

Prospects for the study of evolution in the deep biosphere (Front Microbiol, 2012)

Effects of plant removal on Archaeal microbial communities (Estuaries and Coasts, 2012)

Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria (Appl Environ Microbiol, 2011)

Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000m off Hawaii (ISME J, 2011)

Microbiology of seamounts: Common patterns observed in community structure (Oceanography, 2010)

Zeta-Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii (Geomicro J, 2009a)

Bacterial variability within an iron-silica-manganese-rich hydrothermal mound located off-axis at the Cleft Segment, Juan de Fuca Ridge (Geomicro J, 2009b)

Extreme spatial and temporal variability of hydrothermal microbial mat communities along the Mariana Island Arc and southern Mariana back-arc system (J Geophys Res, 2008)

Abundance and diversity of microbial life in ocean crust (Nature, 2008)

A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities (PLoS ONE, 2007)

Characterization of bacterial community structure in vestimentiferan tubeworm Ridgeia piscesae trophosomes (Mar Ecol, 2007)

My Citations @ Google Scholar

Current Research Project Outreach and News Links:

IODP Exp 366 Spotlight on Microbiology & Origins of Life

Research Fellow Heather Fullerton's website

Kelsey Jesser gets the cover on the May issue of Applied and Environmental Microbiology!

SRoF Ironman Cruise to the Mariana Arc - Nov/Dec 2014

Rust Villages of the Deep: In Pele's Shadow, Iron Oxide, or Rust, Comes to Life

Zeta biogeography makes the cover of Applied and Environmental Microbiology: August 2011

Expedition Report: Exp 331 Deep Hot Bioshpere

FeMO Cruises: 2006 to 2009

Links to Useful Database Sites:

ARB SILVA - Database and Alignment Tools
Ribosomal Database Project
NCBI & GenBank
NLM Catalog: Journals referenced in the NCBI Databases
Biological and Chemical Oceanography Data Management Office

Other Helpful Links:

U.S. Science Support for the Integrated Ocean Drilling Program
Marianas Trench Marine National Monument
Loihi Island in 3011 as seen on "Futurama"
Adobe Acrobat Reader
Biology Department Homepage

Last Update: 04/10/2017