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Experiments on microorganisms capable of surviving silicification are often conducted

to gain a better understanding of the process of silica biomineralization and to gain

insights into microbially influenced rock formations and biofabrics like those found in

ancient deposits such as the Early Archean Apex Chert formation (Schopf, 1993; House

et al., 2000). An ideal microorganism for studying silicification is the large sheathed

cyanobacterium Calothrix, which form distinctive organo-sedimentary structures in the

low to moderate temperature regions of hydrothermal springs or columnar stromatolitic

structures in aquatic systems. Our ability to identify and characterize microfossils from

ancient deposits allows us to gain a better understanding of environmental conditions

on early Earth. Here we characterized Calothrix-dominated biofacies along the outflow

apron of Queen’s Laundry Hot-Spring in Yellowstone National Park using microscopy and

molecular techniques to examine biofacies morphology and phylogenetic diversity. We

found that flow regime and temperature had a profound effect on community composition

as identified by the observation of five distinct Calothrix-dominated communities and on

biofacies architecture along the outflow apron.

Keywords: geomicrobiology, microfossils, mineral templating, hot-springs, biomineralization

INTRODUCTION

Precambrian cherts have been found to yield silicified microfossils suggesting that ancient
microbial communities present in marine waters and hydrothermal ecosystems became embedded
in colloidal amorphous silica and were subsequently entombed and preserved in the fossil
record as distinct textures (Westall et al., 1995; House et al., 2000). Characterization of extant
hot-spring environments provides us the opportunity to better understand and interpret the
paleoenvironment in which ancient biofacies formed, allowing us to take a glimpse into Earth’s
early environments.

The geology of Yellowstone National Park (YNP) strongly influences the composition of
hydrothermal fluids as meteoric waters interact at depth with silica rich acid-intermediate volcanic
rock, thereby enriching hydrothermal fluids with dissolved silica (Channing and Butler, 2007).
Silica deposits, referred to as sinter, form in and around the hot-spring once hydrothermal fluids
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erupt at the surface. As hydrothermal fluids cool the solubility
of amorphous silica is exceeded, e.g., due to changes in
pH or temperature and supersaturation through evaporation,
resulting in the polymerization of dissolved silica and subsequent
precipitation (White et al., 1956; Rimstidt and Barnes, 1980;
Benning et al., 2005; Hugo et al., 2011). Siliceous deposits in
YNP can be studied as extant analogs of early Earth allowing for
the study of biogenic silica deposition and microfossil formation
(Channing and Butler, 2007).

In this study, we describe Calothrix-dominated biofacies
composed of microbe-mineral assemblages in which mineral
deposition exhibits a specific and unique suite of biological
characteristics due to nucleation of minerals onto microbial
biofilm/mat surfaces. Mineralized Calothrix-dominated mats
heavily influence the fabrics of low- to mid-temperature siliceous
sinters forming distinctive hot-spring-associated rock formations
(Walter, 1972; Cady and Farmer, 1996; Jones et al., 2001;
Konhauser et al., 2001). The distinctive Calothrix biofacies
have been instrumental in the interpretation of hot-spring
paleoenvironments (Walter et al., 1996; Campbell et al., 2001;
Jones and Renaut, 2003; Hugo et al., 2011).Microbial populations
in Queen’s Laundry Hot-Spring are exposed to circumneutral
geothermal groundwater fluids that are saturated with dissolved
silica resulting in a series of abiotic silicification reactions (Cady
and Farmer, 1996; Benning et al., 2004). Microfossils form as
silica minerals nucleate on cell wells and in exopolysaccharides,
completely impregnating organic material; this must occur
rapidly for cell and mat morphology to remain intact (White
et al., 1956).

Previous studies have identified Calothrix-like
microstructures from sinter deposits of extinct hot-springs,
suggesting that Calothrix biofilms directly influence the biofabric
of sinter deposits in extant hot-springs (Walter, 1972; Cady
and Farmer, 1996; Jones et al., 2001; Konhauser et al., 2001).
Silicification of Calothrix is thought to be a passive process
due to the rapid and extreme changes in fluid chemistry
as fluids flow from the deep source vent(s) to the shallow
outflow apron (Konhauser et al., 2003). Here we characterize
microfossil formation from three distinct microenvironments
along the outflow apron from Queen’s Laundry Hot-spring
and show that each of these microenvironments host distinct
Calothrix-dominated communities.

Calothrix
Calothrix, constituents of the Rivulariaceae family, one of the
most diverse cyanobacterial lineages, are present in marine,
freshwater, and terrestrial environments. However, little is known
about their genetic diversity from the natural environment
due to the lack of data pertaining to the biodiversity of
Calothrix present across habitats (Sihvonen et al., 2007). The
filamentous cyanobacterium Calothrix has been observed to
occupy the upper 1–2mm of microbial mats formed in silica-
dominated hot-springs across YNP (Walter, 1976). Rivulariaceae
cyanobacteria such as Calothrix are morphologically complex,
possessing specific characteristics that make them unique. These
include tapering trichomes and terminal heterocysts which are
enclosed in a thick fibrillar sheath of microfibrullar capillaceous

structures of exopolysacchaide (EPS) and lipopolysaccharides
(LPS) forming large branched molecules that are insoluble
in water making them resistant to dehydration (Westall
et al., 1995; Hoiczyk, 1998; Whitton, 2002). The multilayered
exterior presents mechanical and permeability obstacles for
larger molecules making it necessary for alternative transport
mechanisms, such as porins, and junctional pore complexes
(Hugo et al., 2011). These alternative transport mechanisms
may contribute to the silicification of cyanobacteria in hot-
spring environments, thereby allowing for the formation and
preservation of microfossils (Hoiczyk and Hansel, 2000).
Monomeric dissolved silica is capable of passing through
the outer sheath and accumulating in the extracellular space.
Polymerization occurs as dissolved silica concentrations increase,
trapping amorphous silica in the extracellular space which
eventually leads to cell death and the formation of a microfossil.
The growth pattern of these microorganisms directly influences
the texture of rock formations in and around the hot-springs
(Cady and Farmer, 1996).

Algal and bacterial biofacies composed of amorphous silica
have been well-characterized and are known to occur around
hot-spring environments in YNP forming structures reminiscent
of stromatolites (Walter, 1972). However, we have characterized
Calothrix-dominated biofacies that form not only textured
sinters that are crudely laminated with wavy surface features
similar to the commonly recognized columnar domes, but three
distinct biofacies identified as; nodular mats, pustular mats (small
domes), and terracette ridges (clusters of contiguous domes).

The actively growing surface of the Calothrix mat becomes
encrusted with silica minerals so that filaments are completely
entombed in a silica matrix deeper in the mat. The rate
of mineralization is dependent on several environmental
parameters such as pH, silica activity, temperature, and presence
of water (Iler, 1979; Braunstein and Lowe, 1996; Walter et al.,
1996). Filaments are oriented in the direction of water flow
and become fossilized in their orientation due to rapid silica
mineralization entombing filaments and EPS making them
appear as bundles of filaments. Once completely entombed
in silica the sheath is difficult to differentiate from the silica
matrix. Due to their resilience to degradation silicified sheaths are
more commonly preserved in the rock record than the internal
trichome (Figure 1; Jones et al., 2001).

In this study, we characterize the biofacies and the microbial
communities from three distinct Calothrix-dominated mats
collected at Queen’s Laundry Hot-Spring in YNP. These distinct
biofacies were characterized from specimens collected along the
temperature gradient of the outflow apron. This was done as
a means to better understand the effects temperature and fluid
dynamics have on community diversity and the morphology
of each distinct biofacies, and to characterize the process of
microfossil formation and preservation in the rock record.

Field Site Description
Queen’s Laundry is a member of the Sentinel Meadows Group
located in the Lower Geyser Basin of YNP, USA at 44◦33′48′′ N,
110◦52′13′′ W. The perimeter of the outflow apron is dominated
by the sheathed filamentous cyanobacterium Calothrix, which
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FIGURE 1 | Scanning electron micrograph of an entombed Calothrix

filament, whose sheath is completely mineralized with silica allowing

the cell to remain intact and preserved.

FIGURE 2 | (Top) Overview of the outflow apron, looking from the

bottom of the apron. (Bottom) Close-up of Calothrix biofacies on the

perimeter of the apron, illustrating nodular and terracette biofacies.

typically populates neutral to alkaline waters between 25 and
50◦C. This gently boiling and surging hot-spring is comprised
of a large deep pool with two source vents discharging ∼0.6m3

h−1 of silica-saturated hydrothermal (92◦C) fluids into a narrow
stream that meanders around the outflow apron, creating a
thermal and pH gradient (Braunstein and Lowe, 1996; Hugo
et al., 2011). The outflow apron broadens into a large braided
channeled apron that gently slopes, draining into marshy
grasslands (Figure 2). Geochemical data reported by the USGS
show that the average concentration of silica from hot-springs in
the Lower Geyser Basin is 3.1mM (McClenskey et al., 2002).

FIGURE 3 | Photo showing three distinct Calothrix biofacies at Queen’s

Laundry Hot-Spring. (A) Nodular Calothrix mats forming adjacent to the

outflow apron in shallow pools. (B) Stratiform terracette mats forming on

ridges along the perimeter of the outflow apron. (C) Shallow pools between

terracette ridges where pustular mats form.

Biofacies characterized were: (1) nodular mats forming in
shallow pools of thermal fluid located at the top and bottom
of the outflow apron; temperatures ∼25◦C (Figure 3C), (2)
stratiform terracette ridges forming along the length of the
outflow apron and wetted by a thin sheet of flowing fluid;
temperatures from 50◦C at the top closest to the source vent to
25◦C at the bottom (Figure 3B), and (3) pustular mats formed
along the length of the outflow apron in shallow gently flowing
thermal pools that form between stratiform terracette ridges;
temperature of 25–50◦C from top to bottom of the outflow apron
(Figure 3A).

MATERIALS AND METHODS

Sample Collection and Preparation
Sinter and microbial mat specimens (1 × 1 cm) were collected
and immediately fixed in a 3% gluteraldehyde solution of 0.2
µm-filtered spring water for microscopy. Samples collected for
molecular analyses were fixed in RNALater (Life Technologies,
Grand Island, NY). All samples were stored at 4◦C while
in the field. Prior to microscopic examination specimens
were rinsed twice in 0.1 M cacodylate buffer to remove
fixative. Calothrix biofacies were examined macroscopically and
microscopically, characterizing gross morphology of intact mats
and the morphology of individual cells.

Sonication Experiments
Silica encrusted Calothrix filaments and associated EPS
were sonicated in order to remove mineral rinds. Prior to
sonication, Calothrix mats exhibited a hirsute appearance from
mineralization of the EPS around the filaments. Sonication at
30 s intervals were increasingly effective until 200 s, when cells
began to lyse.
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Stereomicroscope Analysis
Whole intact Calothrix mats were examined using a Nikon
SMZ800 stereoscope; digital images were acquired using a Leica
(Wetzlar, Germany) DFC digital camera. Specimens were first
examined intact to characterize morphology, surface features,
and growth orientation of filaments. Specimens were then
sectioned lengthwise, with a scalpel and analyzed in cross-section
to characterize the interior of the mat, the average specimen was
5mm thick.

Optical Light Microscopy
Highly mineralized Calothrix mats required removal of mineral
rinds in order to observe cellular characteristics using the
optical light microscope (OLM). Specimens were prepared for
observation by first removing the silica rind encasing filaments
and then by removing the top actively growing portion of the
Calothrix mat. Sonication of mineralized mats was an effective
method of loosening and removing silica rinds that encrusted
sheathed filaments. Densely packed filaments cemented in
mineral matrices were loosened with the removal of minerals
from the sheaths with increasing sonication time. After each

30 s sonication interval the overall mat structure was examined
to characterize the integrity of Calothrix filaments using 20X
objectives under phase contrast using a Leica (Wetzlar, Germany)
DMRX OLM and images were acquired with an Apogee CCD
camera.

Scanning Electron Microscopy
Calothrix mats from each biofacies were examined using a
FEI Siron high-resolution scanning electron microscope (HR-
SEM) equipped with an Energy Dispersive Spectroscopy (EDS)
detector (FEI, Hillsboro, OR). Samples were prepared utilizing
two dehydration techniques: (1) extensive chemical fixation with
osmium tetroxide and dehydration with a graded ethanol series
followed by critical point drying, or (2) chemically fixed with a
2% gluteraldehyde (Fisher, Pittsburg, PA) solution rinsed twice
in 0.1M cacodylate buffer and air-dried in a desiccator. Samples
prepared using the first fixation technique were rinsed twice
in 0.1M cacodylate buffer soaking for 10min each, post-fixed
using a 1% osmium tetroxide (Fisher, Pittsburg, PA) solution
prepared in 0.1M cacodylate buffer (Fisher, Pittsburg, PA) for
1 h, after which samples were rinsed twice in 0.1 M cacodylate

FIGURE 4 | OLM images illustrating the various stages of silicification. (A,B) Illustrate primary (A) and advanced (B) encrustation. (C) Filaments are cemented

together in a solid silica matrix illustrating encasement. (D,E) Illustrate entombment, as filaments are not only encrusted in silica but entombed in a solid silica matrix.
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FIGURE 5 | EDS spectrum of minerals formed on Calothrix filaments,

shows silicon as the dominant element.

buffer, dehydrated using a graded ethanol series (50, 70, 90,
and 100%), and then critical point dried. Dehydrated specimens
were mounted on aluminum pins and coated with 100Å Au-
Pd.

EDS analysis provides elemental and chemical analysis of
a minerals associated with Calothrix filaments. Spectra were
collected using 50 kV, and visualized using AZtecEnergy analysis
software (Oxford Instruments).

Genomic DNA Extraction
Genomic DNA (gDNA) was extracted from samples using the
FastDNA SPIN Kit for Soil (MP Biomedicals, Solon, OH)
following the manufacturer’s protocol with the modification that
the gDNA was eluted into 10mM Tris at pH 8. The purity
and concentration of gDNA were determined with a Nanodrop
ND-1000 spectrophotometer (Thermo Scientific, Wilmington,
DE) and diluted to ∼10 ng/µL for downstream molecular
applications.

Community Diversity
Community diversity of Calothrix biofacies was analyzed
using terminal restriction fragment length polymorphism (T-
RFLP), providing a fingerprint of the community from each
biofacies, based on the small subunit ribosomal RNA (SSU
rRNA) gene. The methodology used for T-RFLP analysis

FIGURE 6 | (A) Cross-section of Calothrix nodular mat, scale bar to the left

shows the average depth of the mats. Notice filaments radiating from the

center of the mat. (B) SEM of Calothrix filament from the top of the mat having

very little silica deposition. (C) SEM of filament from the mat center, the sheath

(S) is heavily encrusted with amorphous silica (Si), the vegetative cell (VC) is

protruding from the sheath. (D) SEM of silicified sheath from the mat bottom.

Internal trichomes have degraded with just the mineralized sheath remaining.

has been reported in detail in previous publications (Davis
and Moyer, 2008; Rassa et al., 2009; Fleming et al., 2013).
This technique accurately resolves populations in microbial
communities of low to intermediate richness (Engebretson
and Moyer, 2003). Electropherograms are imported into the
program BioNumerics (Applied Maths, Austin, TX) where
community fingerprints were compared using average Pearson
product moment correlation (Häne et al., 1993). Community
fingerprints were compared between 50 and 500 base pairs
(bp) and the average Pearson product moment correlation
coefficient was calculated for cluster analysis by unweighted
pair group method with arithmetic mean (UPGMA) combining
eight restriction digests (Davis and Moyer, 2008). The primer
set used was 68F-FAM (5′ 6-FAM - TdNA dNAC ATG CAA
GTC GdK dK CG 3′) and 1492R (5′ dKGdP TAC CTT
GTT ACG ACT T 3′) with identical conditions as previously
reported (Rassa et al., 2009). Three replicate PCR reactions
were pooled, desalted using Amicon R© Pro Purification System
(EMD Millipore, Darmstadt, Germany), and split between
eight restriction enzyme treatments using AluI, BstUI, HaeIII,
HhaI, Hinf I, MboI, MspI, and RsaI (New England BioLabs,
Ipswich, MA). Reactions were visualized with an internal LIZ-
500 (Applied Biosystems, Foster City, CA) size standard by
capillary electrophoresis on an ABI 3130xl genetic analyzer (50-
cm capillary array, POP-6; Life Technologies, Grand Island,
NY).
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FIGURE 7 | SEM of microorganisms colonizing the surface of Calothrix

filaments. (A) Calothrix filament (white arrows) colonized by small rods (black

arrows). (B) Calothrix filaments (white arrows) colonized by microorganisms

exhibiting several morphotypes (black arrows), including straight and curved

rods and cocci. The thin strands around the filaments is dehydrated EPS.

Clone Library
Five replicate SSU rRNA gene PCR reactions were pooled
and cleaned as above, with the modification that the forward
primer did not contain a 5′ fluorescent label. Desalted amplicons
were cloned with a CloneJET PCR Cloning Kit following
manufacturer’s instructions (Thermo Fisher Scientific, Waltham,
MA). All clones were streaked to isolation and assayed for the
correct size fragment using PCR with pJET1.2 forward and
reverse primers. Clones were then grown up in Terrific Broth
with 100 µg mL-1 ampicillin and were sequenced at Beckman
Coulter Genomics (Danvers, MA). Operational taxonomic unit
(OTU) analysis was initially determined with 5′ reads of the
SSU rRNA gene (Tartof and Hobbs, 1987). Sequences were
aligned using the ARB-SILVA database with SINA Webaligner
(Pruesse et al., 2007), masked, and binned into OTUs based
on 97% minimum similarity. At least one clone from each
OTU was chosen for full-length sequencing and checked for
chimeras using Pintail (Ashelford et al., 2005) and Mallard
(Ashelford et al., 2006). Using unambiguously aligned full-length

FIGURE 8 | (A) Cross-section of Calothrix pustular mat. (1) Actively growing

mat (2) Silica deposition (3) Silicified mat (4) Silica deposition. (B) SEM of silica

encrusted Calothrix filaments and EPS from the top of the mat. (C) SEM of

silica encrusted filaments from the middle of the mat, filaments eventually

become encased in amorphous silica. (D) SEM of filaments cemented

together forming a solid biofacies.

sequences, phylogenetic placements according to maximum
likelihood methods were calculated using RAxML version 7.2.6
(Stamatakis, 2006) with the General Time Reversible (GTR)
model of nucleotide substitution, optimized substitution rates,
and GAMMAmodel of rate heterogeneity; bootstrap values were
calculated using a 1000 replicates. Full-length sequences were
submitted to the National Center for Biotechnology Information
(NCBI), accession numbers KU382114 through KU382143.

Estimating Relative Abundance of
Calothrix using T-RFs
Relative proportions of Calothrix from each of the three
biofacies were calculated using restriction maps from the T-RFLP
restriction enzymes (Engebretson and Moyer, 2003; Rarnette,
2009). Estimates of community composition were generated in
silico from Calothrix and cyanobacterial sequences found from
clone library analysis. Upon examining the eight restriction
enzymes we found that restriction enzyme BstUI had the most
specific identifier signature for Calothrix by comparison of the
terminal-restriction fragments (T-RFs). Comparison of T-RFs
showed that peaks at 57 bp were shared with the least amount
of other cyanobacteria from the Calothrix biofacies.

To estimate the relative abundance of Calothrix within the
community all bands between 50 and 500 bp were counted for
the BstUI digests. The height of the band representing the 57
bp Calothrix T-RF was divided by the sum of the heights from
all the bands in the electropherogram above a 3% background
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FIGURE 9 | (A) Cross-section of Calothrix terracette mat. Most of the mat is

heavily mineralized with amorphous silica with a thin layer of un-mineralized

filaments on the surface. (B) SEM of silica encrusted Calothrix filaments from

the top of the mat. (C) SEM of filaments becoming entombed in a solid silica

matrix. (D) SEM of a preserved sheath from the mat bottom, internal trichomes

have degraded with just the sheath remaining.

relative fluorescence maximum. This method gave us an estimate
of Calothrix relative abundance. Abundance estimated from T-
RFs is only semi-quantitative. For example, while this method
estimated a 76% abundance ofCalothrix sp., clone library analysis
found only 47% Calothrix sp.

RESULTS

We identified three distinct stages of silicification using
microscopy: (1) encrustation, when the sheath of individual
filaments is overlain with fragile silica minerals that easily
fracture and dissociate when manipulated (Figures 4A,B); (2)
encasement, when cells have a rind of silica minerals forming
around individual filaments and EPS developing a thick, tough
semisolid outer mineral rind (Figure 4C); and (3) entombment
of individual filaments occurs when cells are cemented together
in a solid silica matrix (Figures 4D,E). EDS analysis of Calothrix
biofacies revealed that silicon was the most abundant element in
the mineral matrices (Figure 5).

Nodular Calothrix Biofacies
Nodular Calothrix mats formed loose, spherical nodules on the
bottom of shallow pools. Nodular mats were pigmented dark
green to brown. The dark coloration is due to the presence of
the pigment scytonemin in the sheath and is typically found to
be synthesized in environments where cyanobacteria are exposed
to intense light and UV irradiation (Ehling-Schulz et al., 1997;
Dillon and Castenholz, 2003). Filaments in the nodularmats were
oriented vertically from the base of the mat fanning out toward

the surface of the mat which was encased in a semi-solid EPS-
mineral matrix of amorphous silica (Figure 6A). Nodular mats
were found growing in shallow pools covering a wide distribution
of temperatures between 75.9 and 14.3◦C. Calothrix filaments
at the surface of the mat serve as a substrate for colonization
by other microorganisms (Figure 7), filaments in the center of
the mat had accumulated more silica in their EPS with the
outer sheath becoming semi-solid, and filaments at the base of
the mat were entombed in amorphous silica with the extensive
outer sheath becoming completely fossilized (Figures 6B–D
respectively).

Pustular Calothrix Biofacies
Pustular Calothrix mats formed attached to the bottom of
shallow terracette pools along the length of the outflow apron.
Mats had an irregular morphology sitting atop a semi-solid
core of compacted silica grains, in which filaments grow
radially from the core. Pustular mats were dark brown-green
pigmented, forming an extensive mat along the bottom of
pools (Figure 8A). Calothrix filaments were cemented together
in a semi-solid EPS-silica matrix, with the tapered ends of the
filament anchored in the underlying sinter and the filament
body and terminal heterocyst directed outwards. The surface
of the mat had a hirsute appearance from protruding filaments
(Figure 8B). The mat was comprised of alternating layers of
Calothrix filaments and amorphous silica, with layers alternating
between the tapered and broad ends of the filament (Figure 8C).
Sinter at the base of the mat contained completely entombed
filaments that were oriented vertically throughout the mat
perpendicular to the attachment site at the base of the structure
(Figure 8D). Pustular mats formed in spring fluids from 61.2
to 7◦C.

Stratiform Calothrix Biofacies
Stratiform terracette mats formed slightly raised ridges that
formed a continuous meandering narrow mat across the width
of the ridge. Mats formed along the length of the outflow apron
over a broad temperature range, from 62.2 to 8.5◦C. Microscopic
observations of cross-sections through terracette mats exposed
multiple laminae composed of alternating layers of filaments
that have an upward growth and dense silica layers (Figure 9A).
Calothrix filaments in the actively growing upper portion of the
mat exhibited tan to dark brown pigmentation, filaments were
heavily encrusted in a semi-solid silica matrix (Figures 9B,C).
Sheaths at the base of the mat were completely entombed and
fossilized (Figure 9D).

Community Analyses
T-RFLP analyses confirmed the presence of Calothrix as the
dominant bacterial species (or operational taxonomic unit, OTU)
in these biofacies samples, making up on average 43% of
the community by T-RFLP. From clone library analysis, the
dominant Calothrix sp. (at 47% of the community) from that
single sample were related to other Calothrix spp. (AY147029-
30) found across YNP (Dillon and Castenholz, 2003). The next
most abundant species was an unclassified cyanobacterium at
12% of the community. Further, the unclassified cyanobacterium
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FIGURE 10 | Maximum likelihood phylogenetic tree showing the placement of the two most abundant OTUs from a nodular biofacies (QL2010_13).

Calothrix clone 6M13 made up 47% of the bacterial community, with the next most abundant clone, 16pJET (12%), being an unclassified cyanobacteria. The tree is

rooted using Aquifex pyrophilus.

FIGURE 11 | Dendrogram illustrating the cluster analysis of bacterial communities from T-RFLP fingerprints, showing the clustering of our three

distinct biofacies at different temperature optima. Starred (*) sample was selected for clone library analysis.
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was most closely related (Figure 10) to an uncultivated clone
from a hot-spring in China, with the closest cultivated
relative within the GpIV genus of the Cyanobacteria (92%
similar to Halomicronema sp.). The majority of the remaining
members of the clone library bacterial community were
heterotrophic lineages within the Bacteroidetes at 27% of the
community.

Grouping of biofacies samples by T-RFLP fingerprints showed
clustering based primarily by temperature regime and then by
biofacies type and the temperature regime and biofacies type
(Figure 11). Clustering of samples was also largely dependent
on changes in the relative abundance of secondary microbial
communities which were identified by their T-RF fingerprint, in
agreement with observations made via microscopy (Figure 7).
The changes in heterotroph abundance is seen as a decline in
Calothrix relative abundance (%) with temperature in Figure 11.
Biofacies samples ranged from 76 to 9% Calothrix (Figure 10)
(Dicksved et al., 2007). Terracette biofacies clustered into three
communities based on different sampling temperature niches
(high 34◦C, middle 30◦C, and low 22◦C). With three clusters of
stratiform terracette communities, the diversity of this biofacies
type was much greater than the other two biofacies types (55 vs.
83% minimum similarity, respectively).

DISCUSSION

In YNP Calothrix biofacies appear to be constrained to shallow
(few cm) regions of the spring across a broad temperature range
(7–75.9◦C). The specific environmental conditions (i.e., flow rate
and temperature) in which these biofacies form have implications
for the interpretation of Calothrix biosignatures preserved in
ancient cherts, not unlike those identified by House et al. (2000)
in the Gunflint Formation. Previous studies have shown that
the extensive fibular sheath around Calothrix filaments plays a
significant role in mineral templating as dissolved silica ions
nucleate on the sheath and associated EPS and LPS, thereby
promoting microfossil formation (Gilbert et al., 2005; Hugo
et al., 2011). The addition of reactive side chains to the EPS and
LPS challenges the idea of passive mineral nucleation, favoring
instead active, directed templating of biogenic minerals (Bhaskar
and Bhosle, 2005; Hugo et al., 2011). Directed nucleation of
minerals may serve several purposes for the survival of Calothrix
in extreme environments. For example the silica rind may
offer UV protection, deter predation, and prevent dehydration
(Phoenix et al., 2006). In contrast to directed mineral nucleation,
spontaneous nucleation occurs as silica-rich hydrothermal fluids
erupt to the surface and undergo rapid changes in temperature
and pH (Yee et al., 2003). Our findings suggest that soluble silica
ions, similar in molecular structure to water, have the ability to
cross through the fibular sheath resulting in the accumulation of
silica ions in the extracellular space. The accumulation of silica
ions results in spontaneous nucleation, forming silica colloids
that become trapped in the extracellular space, further entombing
the internal trichomes in silica, and promoting their preservation
as microfossils.

In this study we identified and characterized three distinct 
biofacies along the outflow apron of Queen’s Laundry Hot-
Spring, each of which formed distinct textures specific to the 
flow regime in which they formed. Nodular biofacies formed 
on the bottom of pools; these biofacies experience little to no 
fluid motion as they typically form in meanders when fluid 
discharge from the hot-spring is high. Pustular biofacies form 
in extremely shallow pools along the outer edge of the outflow 
apron; mats forming here are attached to the bottom of the 
pool and experience continual but slow fluid motion. Stratiform 
terracette biofacies form slightly raised ridges along the outer 
edge of the outflow apron and experience rapid sheet flow fluid 
motion. Due to the rapid flow rate, stratiform biofacies are 
comprised of thin compact layers of Calothrix filaments overlain 
by relatively massive silica deposits.

We identified and characterized three distinct stages of 
silicification: encrustation, encasement, and entombment. Close 
examination of these stages indicate that early silicification 
and encrustation of Calothrix occurs on the surface of the 
extensive outer sheath, and with continued silica deposition 
filaments become encased and eventually cemented together. 
With continued silica deposition filaments become entombed 
and advanced mineralization occurs with the infiltration of silica 
ions in the extracellular space.

Community fingerprinting coupled with clone library 
construction confirmed that biofacies were Calothrix-dominated. 
In addition, we found that within the Queen’s Laundry Hot-
Spring there was variation in community composition between 
each distinct biofacies as a result of environmental conditions 
(i.e., temperature and pH). A prior study by Boyd et al. (2012) 
found that the patchy distribution of phototrophs in diverse 
ecological niches was a result of adaptions enabling habitation 
in diverse environments as a function of temperature, pH, and 
sulfide concentrations. In addition we would suggest that flow 
regime in which the biofacies form is equally important as it 
has a profound impact on the delivery of dissolved chemical 
constituents (e.g., nutrients, carbon, sulfide, etc.), and influences 
temperature, pH, and morphology of the biofacies.
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