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Comparison of genomic DNA sequences from human and mouse revealed a new
apolipoprotein (APO) gene (APOAV ) located proximal to the well-characterized
APOAI/CIII/AIV gene cluster on human 11q23. Mice expressing a human APOAV
transgene showed a decrease in plasma triglyceride concentrations to one-third
of those in control mice; conversely, knockout mice lacking Apoav had four
times as much plasma triglycerides as controls. In humans, single nucleotide
polymorphisms (SNPs) across the APOAV locus were found to be significantly
associated with plasma triglyceride levels in two independent studies. These
findings indicate that APOAV is an important determinant of plasma triglyc-
eride levels, a major risk factor for coronary artery disease.

Plasma lipid levels are a major determinant
of cardiovascular disease susceptibility (1).
Members of the apolipoprotein gene family
have been shown to play a significant role in
determining an organism’s lipid profile, with
alterations in the level or structure of these

molecules leading to abnormal lipid levels
and atherosclerosis susceptibility (2–6). The
apolipoprotein gene cluster (APOAI/CIII/
AIV ) on human 11q23 (7) is a well-studied
region known to influence plasma lipid pa-
rameters in humans. Defined mutations in

this cluster dramatically affect plasma lipid
profiles in both humans and mice (2, 8–12),
and common sequence polymorphisms in this
interval have been implicated as contributing
to severe hypertriglyceridemia (13–16).

Genome sequencing efforts produced fin-
ished sequence throughout the human APOAI/
CIII/AIV region, thereby providing a resource
to better understand the genomic structure of
this locus (17). To facilitate the identification of
evolutionarily conserved sequences with poten-
tial function near this cluster, we determined the
sequence of ;200 kilobase pairs (kbp) of or-
thologous mouse DNA and compared the
mouse and human sequences (Fig. 1) (18). On
the basis of extended interspecies sequence
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Fig. 1. Human and
mouse comparative se-
quence analysis of the
APOAI/CIII/AIV gene
cluster. (A) A schematic
of the genomic organi-
zation of human
APOAV and the relative
SNP positions (arrows).
APOAV exons are
shown with solid boxes
and the distance be-
tween each SNP is indi-
cated above the line.
The predicted tran-
scription start site is
depicted by a bent ar-
row and the relative
position of the promot-
er and the start and
stop codons are shown.
(B) In each panel, 30
kbp of contiguous hu-
man sequence is illus-
trated horizontally.
Above each panel ar-
rows correspond to
known genes and their
orientation with each
exon depicted by a box
(gene names are indi-
cated above each ar-
row). The VISTA graph-
ical plot displays the
level of homology be-
tween human and the orthologous mouse sequence. Human sequence is represented on the x axis and the percent similarity with the mouse sequence is
plotted on the y axis (ranging from 50 to 100% identity).

R E P O R T S

www.sciencemag.org SCIENCE VOL 294 5 OCTOBER 2001 169



conservation about 30 kbp proximal to the
APOAI/CIII/AIV gene cluster, we identified a
genomic interval that contained a putative apo-
lipoprotein-like gene (APOAV ) (Fig. 1B). The
presence of publicly available mouse ex-
pressed-sequence tags (ESTs) matching the
mouse genomic sequence suggested that the
interval was transcribed. The annotation of
mouse ESTs on the mouse genomic sequence
identified four exons containing a 1107–base
pair (bp) open reading frame. The predicted
368–amino acid sequence showed significant
homology to various known apolipoproteins,
with the strongest similarity to mouse Apoaiv
(24% identity and 49% similarity). Examina-
tion of the orthologous human genomic se-
quence indicated a genomic structure similar to
the mouse region and predicted an open reading
frame encoding a 366–amino acid protein with
high sequence homology to mouse Apoav
(71% identity and 78% similarity), as well as
human APOAIV (27% identity, 48% similari-
ty). Protein structure analyses predicted several
amphipathic helical domains and an NH2-ter-
minal signal peptide in both human and mouse
APOAV, characteristic features of lipid-bind-
ing apolipoproteins (19, 20). To determine the

expression pattern of APOAV, we hybridized
Northern blots containing mRNA from several
different human and mouse tissues with
APOAV cDNA probes from human and mouse,
respectively (Fig. 2, A and B). Transcripts
about 1.3 and 1.9 kilobases (kb) in length were
identified predominantly in liver tissue from
both species. The full-length sequences of
mouse cDNAs indicated the two transcripts in
mice are likely the result of alternative polyad-
enylation (21, 22).

To assess the function of APOAV, we
generated mice overexpressing human
APOAV as well as mice lacking Apoav,
through standard mouse transgenic and gene
knockout technologies (Fig. 2, C to E) (23–
25). Upon comparing these two groups, we
observed dramatic, but opposite effects on
plasma triglyceride levels (26). Human
APOAV transgenic mice were created by us-
ing a 26-kbp Xho I fragment predicted to
contain only human APOAV, and this genom-
ic transgene was expressed in liver, as is the
endogenous gene (Fig. 2C). These transgenic
mice had levels of plasma triglyceride that
were about one-third of those of control lit-
termates [0.32 6 0.11 (S.D.) mg/ml versus

0.90 6 0.29; t test, P , 0.0001] (Fig. 3A).
Similar data were obtained from a second
independent founder line (27). Apoav knock-
out mice were generated by deleting the three
exons predicted to encode Apoav (Fig. 2D).
Despite the lack of Apoav transcript (Fig.
2E), mice homozygous for the deletion were
born at the expected Mendelian rate and ap-
peared normal. In contrast to the decreased
triglyceride levels noted in APOAV transgen-
ics, Apoav knockout mice had about four
times as much plasma triglyceride as their
wild-type littermates [1.53 6 0.77 (SD) mg/
ml versus 0.37 6 0.12; t test, P , 0.001)
(Fig. 3B). Characterization of lipoprotein par-
ticles by fast-protein liquid chromatography
(FPLC) and gradient-gel electrophoresis
(GGE) revealed that levels of very low den-
sity lipoprotein (VLDL) particles were in-
creased in the homozygous knockout mice
and decreased in the transgenic mice com-

Fig. 2. APOAV expression in humans and wild-type, transgenic, and knockout mice (52). (A) A
mouse Apoav cDNA probe was hybridized to a multi-tissue RNA blot from wild-type mice. Each
lane contained one of eight mouse tissues (Clontech, Palo Alto, California): 1, heart; 2, brain; 3,
spleen; 4, lung; 5, liver; 6, skeletal muscle; 7, kidney; or 8, testis. (B) A human APOAV cDNA probe
was hybridized to an RNA blot containing eight human tissues (Clontech,): 1, heart; 2, brain; 3,
placenta; 4, lung; 5, liver; 6, skeletal muscle; 7, kidney; or 8, pancreas. (C) A human-specific APOAV
cDNA probe was hybridized to total RNA blots from human APOAV transgenic mice and controls.
Lane assignments are as follows: 1 and 5, transgenic liver; 2 and 6, transgenic intestine; 3 and 7,
wild-type liver; and 4 and 8, wild-type intestine. (D) A diagram of the targeting construct used to
generate Apoav-deficient mice. Homology arms were designed to delete the coding exons of the
gene (depicted by black boxes). Properly targeted embryonic stem cells were identified by using an
external 39 probe, which detects a 17-kb Eco RI fragment wild-type allele and a 10-kb Eco RI
fragment upon targeting (27). (E) Northern blot analysis of various genotype mice following the
Apoav targeting event. Each lane contains liver mRNA from a wild-type (lane 1), heterozygous (lane
2), and homozygous knockout mouse (lane 3). To confirm similar amounts of RNA were loaded per
lane, duplicate gels were examined by ethidium bromide staining.

Fig. 3. Plasma triglyceride and cholesterol lev-
els for APOAV transgenic and knockout mice on
standard chow diet. (A) Human APOAV trans-
genic mice compared with isogenic FVB strain
control littermates (n 5 48 for transgenics; n 5
44 for controls; Student’s t test *P , 0.0001
for transgenic versus control). (B) Mice lacking
Apoav compared with mixed 129Sv/C57BL6
strain controls littermates (n 5 13 for wild-
type, 1/1; n 5 22 for heterozygotes, 1/–; n 5
10 for homozygous knockouts, –/–; Student’s t
test, **P , 0.001 for wild-type versus knock-
out). Error bars correspond to the standard
deviation for both graphs. No differences were
found in HDL-cholesterol levels in transgenic or
knockout mice compared with controls (27).
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pared with controls (28). VLDL levels in a
heterozygous knockout mouse were interme-
diate between the homozygous knockout and
control mouse. VLDL peak particle size as
assessed by GGE and FPLC peak elution
volume was similar in all animals (29). Anal-
ysis of FPLC elution volumes demonstrated
mouse Apoav immunoreactivity in VLDL
and HLD fractions.

The observed changes in plasma triglyc-
eride levels in Apoav knockout and trans-
genic mice were directly opposite those pre-
viously reported in Apociii knockout and
transgenic mice (9, 10). The Apoav knock-
outs in our study displayed about a 400%
increase in plasma triglycerides compared
with the 30% decrease noted in Apociii
knockouts, whereas APOAV transgenics
showed decreased triglyceride levels com-
pared with the increase reported in APOCIII
transgenics. Accordingly, we examined the
effect of altered APOAV expression on Apociii
levels. Differences were found in apociii pro-
tein but not transcript levels in both APOAV
transgenic and knockout animals; Apociii lev-

els were increased ;90% in Apoav knockouts
and decreased ;40% in APOAV transgenics.
Because alterations in APOAV expression lead
to changes in Apociii protein levels, the
effect on triglycerides we observed may be
mediated through Apociii. The fact that
APOAV transgenic mice have one-half the
triglycerides that the previously described
Apociii knockout mice have indicates (10)
that changes in Apociii alone cannot ex-
plain the entire effect of APOAV. In addi-
tion to APOCIII, the overexpression of sev-
eral human apolipoprotein transgenes has
been shown to increase triglyceride levels
in mice (8, 9, 30–33), whereas only the
APOAV transgene leads to decreased tri-
glycerides, suggesting another mechanism
behind this effect.

The observation of significant lipid abnor-
malities in mice overexpressing and lacking
Apoav led us to explore the relationship be-
tween DNA sequence polymorphisms in the
gene and plasma lipid levels in humans. To
serve as genetic markers for association studies,
we identified single nucleotide polymorphisms

(SNPs) across and surrounding the human
APOAV locus (34) (Fig. 1A). Four markers
with relatively high minor allele frequencies
(.8%) were obtained. Three of the SNPs were
separated by 3 kbp within APOAV (SNP1 to
SNP3); the fourth SNP (SNP4) was located
;11 kbp upstream of the gene (Fig. 1A). These
markers were scored in about 500 random un-
related normolipidemic Caucasian individuals
who had been phenotyped for numerous lipid
parameters before and after consumption of
high- and low-fat diets (35). We found signifi-
cant associations between both plasma triglyc-
eride levels and VLDL mass and the three
neighboring SNPs (SNPs 1 to 3) within APOAV
but not with the distant upstream SNP4 (Figs.
1A and 4A). Specifically, the minor allele of
each of these SNPs (SNPs 1 to 3) was associ-
ated with higher triglyceride levels independent
of diet. Independent analysis of each of these
SNPs (SNPs 1 to 3) revealed plasma triglycer-
ide levels were 20 to 30% higher in individuals
having one minor allele compared with individ-
uals homozygous for the major allele (Fig. 4A).
Analysis of SNP allele frequencies in more than

Fig. 4. Human APOAV polymorphisms and lipid
association data. (A) Plasma lipid concentrations for
a given genotype for 4 neighboring SNPs (SNPs 1 to
4). Individuals (n 5 501) were genotyped, and the
number of successfully scored individuals is indicated. Notation: 1,1 is homozygous for the major allele; 1,2 is heterozygous for the major and minor
alleles. Three individuals were homozygous for the SNP3 minor allele and had a mean plasma triglyceride level of 210 6 155 mg/dl. Because of the
small number of individuals, these data were excluded from the analysis. All sites were found to be in Hardy-Weinberg equilibrium (53). The minor
allele frequency for each SNP (SNPs 1 to 4) was 9.1, 8.4, 9.2 and 36.3%, respectively. Not shown is the lack of association between each of the four
SNPs and IDL-, LDL-, HDL-mass, ApoAI, and ApoB levels [P . 0.05, (54)]. (B) Pair-wise measure of linkage disequilibrium (?D9?) was calculated for all
combinations of SNPs as previously described (55). A ?D9? value of 1 indicates complete linkage disequilibrium between two markers. (C) A summary
of SNP3 genotyping data from an independent set of individuals stratified based on triglyceride levels. P values were determined by chi-square analysis.
BMI, body mass index; TG, plasma triglyceride level (mg/dl 6 SD). Similar analysis stratifying the original population did result in statistically significant
differences in the genotype distribution when we used a similar analysis (P 5 0.044).
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1000 chromosomes revealed that the three
neighboring SNPs (SNPs 1 to 3) in APOAV
were in significant linkage disequilibrium that
does not extend to SNP4 (located ;11kb up-
stream of APOAV ) (Fig. 4B). This finding sup-
ports the existence of a common haplotype in
the APOAV region influencing plasma triglyc-
eride levels (Figs. 1A and 4B). Furthermore,
studies in this population found no significant
association of triglyceride levels with an Sst I
polymorphism in APOCIII (located ;40 kbp
upstream of APOAV ) (Fig. 1A) which has been
previously associated with hypertriglyceride-
mia (15, 16, 28, 36). This finding indicates that
the APOCIII Sst I polymorphism is not a mark-
er for the metabolic effect defined by the
APOAV haplotype.

Genetic association studies have frequently
proved difficult to reproduce. Therefore, we
performed a second human association study
with one SNP (SNP3) in an independently as-
certained cohort using a different experimental
design (37). SNP3 was chosen for genotyping
in this study based on its strong association in
our first study and its apparent complete linkage
disequilibrium with the other two associated
SNPs (SNPs 1 and 2) (Fig. 4, A and B). In the
second study, we examined the allele frequen-
cies for SNP3 in an unrelated group of Cauca-
sians stratified according to plasma triglyceride
levels (Fig. 4C). The two groups represented
161 individuals with triglyceride levels in the
top 10th percentile and 298 individuals from the
bottom 10th percentile. A significant overrep-
resentation of the heterozygous genotype was
found in individuals with high compared with
low plasma triglyceride levels (21.7% versus
6.7%, respectively), thereby validating the as-
sociation of APOAV polymorphisms and tri-
glyceride levels in a second cohort. When the
cohort was stratified based on gender, an even
more pronounced overrepresentation of the het-
erozygous genotype was found in males with
high compared with low plasma triglyceride
levels (29.9% versus 4.2%, respectively).

Despite the previous availability of se-
quence in the human APOAI/CIII/AIV genomic
interval, we only recently were directed to a
novel gene (APOAV ) by comparison of human
and mouse sequence, illustrating the power of
comparative sequence analysis to prioritize po-
tential functional regions of the genome.
APOAV represents a fourth member of the clin-
ically important apolipoprotein gene cluster on
human 11q23. Our human and mouse data,
both when taken independently and combined,
indicate an important role for APOAV in plas-
ma triglyceride homeostasis. Although previous
data have associated the APOCIII locus with
extremely high plasma triglyceride levels in
humans, our study indicates that the APOAV
genomic interval represents an independent in-
fluence on this important lipid parameter in the
general population. These results suggest the
possible use of APOAV polymorphisms as

prognostic indicators for hypertriglyceridemia
susceptibility and the focus on APOAV modu-
lation as a potential strategy to reduce this
known cardiovascular disease risk factor.
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Phosphorylation-Dependent
Ubiquitination of Cyclin E by
the SCFFbw7 Ubiquitin Ligase
Deanna M. Koepp,1,2,3 Laura K. Schaefer,1,2,3* Xin Ye,1*

Khandan Keyomarsi,4 Claire Chu,1 J. Wade Harper,1

Stephen J. Elledge1,2,3†

Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the
transition from the G1 phase to the S phase of the cell cycle. The amount of
cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated
proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiq-
uitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast,
flies, and mammals. Fbw7 associates specifically with phosphorylated cyclin E,
and SCFFbw7 catalyzes cyclin E ubiquitination in vitro. Depletion of Fbw7 leads
to accumulation and stabilization of cyclin E in vivo in human and Drosophila
melanogaster cells. Multiple F-box proteins contribute to cyclin E stability in
yeast, suggesting an overlap in SCF E3 ligase specificity that allows combina-
torial control of cyclin E degradation.

Passage through the cell cycle is controlled
by the activity of cyclin-dependent kinases
(CDKs) (1). Cyclin E is the regulatory sub-
unit of Cdk2 and controls the G1 to S phase
transition, which is rate-limiting for prolifer-
ation. Cyclin E is tightly regulated by ubiq-
uitin-mediated proteolysis, which requires
phosphorylation on Thr380 and Cdk2 activa-
tion (2–4). Failure to properly regulate cyclin
E accumulation can lead to accelerated S
phase entry (5), genetic instability (6), and
tumorigenesis (7). Elucidating the mecha-

nism controlling cyclin E destruction has im-
portant implications for understanding con-
trol of cell proliferation during development
and its subversion by tumorigenesis.

The formation of polyubiquitin-protein
conjugates, which are recognized and de-
stroyed by the 26S proteasome, involves
three components that participate in a cascade
of ubiquitin transfer reactions: a ubiquitin-
activating enzyme (E1), a ubiquitin-conjugat-
ing enzyme (E2), and a specificity factor (E3)
called a ubiquitin ligase (8). E3s control the
specificity of target protein selection and
therefore are key to controlling individual
target protein abundance.

The SCF (Skp1/Cullin/F-box protein) com-
prises a large family of modular E3s that con-
trol ubiquitination of many substrates in a phos-
phorylation-dependent manner (9). SCF com-
plexes contain four subunits: Skp1, Cul1
(Cdc53), Rbx1, and an F-box–containing pro-
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