Biol 322 Fall 2012 Answers to some Quiz 2 Study Sheet Questions

Problem 1

a. Use cell count from tube 3 .

Overall dilution for tube $3=\left[10^{-1}\right] \times\left[2 \times 10^{-1}\right] \times\left[5 \times 10^{-1}\right]=1 \times 10^{-2}$
Viable cell count $/ \mathrm{ml}=167 \mathrm{X} 4 \times 10^{2}=6.7 \times 10^{4}$
b. $10 \mathrm{ml} / 10^{5}=10,000 \mathrm{ml} / 10^{5}=0.1 \mathrm{ul} \rightarrow$ not even a P2 would do an accurate job of measuring this small amount

Problem 2

a. Use cell count from tube \#3. Viable cell count $/ \mathrm{ml}=1 \mathrm{X} 10^{7}$
b. Use cell count from tube\#2. MercuryRcell $/ \mathrm{ml}=2.2 \times 10^{5}$
\% resistant $=2.2 \times 10^{5} / 1 \mathrm{X} 10^{7} \mathrm{X} 100=2.2$

c. Why do you do a serial dilution rather than one single dilution?

Serial dilutions are a more accurate way of producing a very dilute suspension of cells. Also, you typically need a series of dilutions to ensure that one of the platings give you a countable number of colonies in the 30-300 range.

Problem 3

Indicate genotype by letter (above)
\qquad Strain 1 \qquad _a \qquad Strain 3 \qquad __c_Strain 4

Problem 4

Part a: The rpoB mutation rate is 100X that of gyrA
Part b: He is looking for very different kinds of mutations in the two genes -- loss-of-function in rpoB and a type of gain-of-function (altered function) in gyrA. Mutations causing a LoF occur with much greater frequency than mutations causing GoF

(Problem 5

a. Minimal media without leucine.
b. True: most new mutations will not reverse or suppress the original mutation

* Problem 6

Part a. $5 \times 10^{-5}=1$ mutant per 20,000 cells
She should set up a minimum of 20 plates, but of course she may find no mutants in 20 plates:
For your personal enrichment: for each colony that she looks at, there is a $0.99995(19,999 / 20,000)$ probability that it will be wildtype. If she looks at exactly 20,000 colonies, the probability that they will all be wildtype $=37 \%[0.99995 \mathrm{E}$ $20,000]$. So she may need to look at more than 20,000 .
Part b. She will see a continuous lawn of E. coli because both the wild-type and mutant cells will grow. How should she have set up the experiment?

\% Problem 9

- Use a selection over a screen if possible:
- Work up a clear flow chart...

Strain A by itself: treat culture with mk virus and select on MM + maltose (as sole carbon source) + thiamine + leucine (strain can't make the latter two compounds)
Strain B by itself: select on plates containing tetracycline and streptomycin (either rich media such as nutrient agar or mimimal media with lactose or glucose plus leucine)
Recombinant: select on minimal media with streptomycin and maltose as the sole carbon source (+ thiamine and leucine)

Problem 10

a. Use plates from tube $3: 108+92 / 2=100$ cells

100 cells $/ \mathbf{0} .1 \mathrm{ml}=1 \mathrm{X} \mathrm{10E} 3 \mathrm{cell} / \mathrm{ml}$ in tube 3
Viable cell count in the slurry $=[1 \mathrm{X} 10 \mathrm{E} 3] /[1 \mathrm{X} 10 \mathrm{E}-4]=1 \mathrm{X} 10 \mathrm{E} 7 \mathrm{cells} / \mathrm{ml}$
b. Use plates from tube 2: 47+53/2 = 50 cells
$\mathbf{5 0} \mathbf{c e l l} / \mathbf{0} .2 \mathbf{~ m l}=2.5 \mathrm{X} 10 \mathrm{E} 2$ resistant cells $/ \mathrm{ml}$ in tube 2
Resistant cells per ml in slurry $=[2.5 \mathrm{X} 10 \mathrm{E} 2] /[1 \mathrm{X} 10 \mathrm{E}-2]=2.5 \mathrm{X} 10 \mathrm{E} 4$
$\%$ resistant $=2.5 \mathrm{X} 10 \mathrm{E} 4 / 1 \mathrm{X} 10 \mathrm{E} 7$ (resistant cells/total cells) $\mathrm{X} 100=2.5 \mathrm{X} 10 \mathrm{E}-1$ $=0.25 \%$

