Part II: Transfer of genetic information in the bacterium
Escherichia coli with Hfr strains

You will receive separate homework and data analysis assignments related to this lab

Introduction: *E. coli* strains can be divided into two groups on the basis mating properties. F+ or male cells are able to donate chromosomal markers to recipient F- or female cells, if mixed together under the appropriate conditions. Whereas every cell in an F+ population can transfer the sex factor to a female recipient, only a small fraction of the cells in an F+ population will transfer chromosomal markers. Why? *E. coli* strains exist in which the F factor is stably integrated into the host DNA in every cell. These are termed Hfr strains (high frequency recombination) since every cell now transfers chromosomal markers and the population as a whole displays a high frequency of transfer relative to an F+ population.

Once an Hfr strain has been isolated from an F+ population and purified, each cell transfers the chromosome in a linear fashion from a fixed starting point or origin, O. Hfr strains can be easily employed to provide mapping data based on the time of entry of markers. The first suggestion that the *E. coli* chromosome was circular came from such genetic studies that showed the genome to be a closed, continuous linkage group.

Transfer of chromosomal markers from a Hfr to an F- strain.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Sex</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSH 119</td>
<td>Hfr C</td>
<td>car::Tn10 Δ(gpt-lac)5 cysG metB</td>
</tr>
<tr>
<td>CSH 130</td>
<td>F-</td>
<td>ara C Δ(gpt-lac)5 gyrA rpoB</td>
</tr>
</tbody>
</table>

The gyrA mutation confers resistance to nalidixic acid and the rpoB mutation confers resistance to rifamycin. Δ(gpt-lac)5 is a deletion that removes a chunk of the *E.coli* chromosome including the proA and proB genes and the lactose utilization genes. *car::Tn10* is a complicated mutation. It results from an insertion of an *E. coli* transposon (called Tn10) in the *car A* gene. This insertion in the *car*
gene makes the cell auxotrophic for arginine and uracil. The Tn10 transposon itself carries a gene for \textit{tet}^R.

All genes not listed under genotype are assumed to be wild-type. The F factor in the Hfr C strain is integrated at about 12 minutes on the \textit{E. coli} map and transfers genes in the counterclockwise direction around the map.

Day 0: (This step will be done for you.) Cultures of CS119 and CSH130 will be set up and incubated overnight at 37\(^\circ\) C without aeration.

<table>
<thead>
<tr>
<th>TUESDAY NOV 10</th>
<th>Day 1: Set up Hfr X F- cross</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1: (These two steps will also be done for you.) The overnight cultures will be diluted into fresh media two hours before setting up the following cross. In a large test tube, mix 0.5 ml of the donor strain with 0.5 ml of the recipient strain and let sit in a 37(^\circ) incubator for 90 minutes. Also set up a control with the donor strain alone and the recipient alone.</td>
<td></td>
</tr>
</tbody>
</table>

\begin{itemize}
 \item \textbf{Students start here:} After 90 minutes, add 5 ml of nutrient medium to each tube and incubate for an additional 1-2 hours (to allow the generation of stable recombinants). (Nutrient medium is a rich medium containing all the supplements that any auxotroph might need.)
\end{itemize}

Plating of Mating Mixture:
Plate 0.1ml of undiluted culture on a nutrient agar plate containing nalidixic acid and tetracycline. Also plate out 10\(^{-1}\) and 10\(^{-2}\) dilutions. Set up two plates of undiluted culture, two of the 10\(^{-1}\) dilution and one of the 10\(^{-2}\) dilution.

Plating of Controls:
Plate 0.1 ml of a 10\(^{-1}\) dilution of donor cells onto L + nal + tet plate Repeat for the recipient strain.
Plate all plates upside down at 37\(^\circ\) overnight.
WEDNESDAY NOV 11: Day 2 Set up 50 colony grid

Examine your cross and control plates for colonies

After setting up the colony grid (see below) store these plates at 4°C.

Each student should set up one 50-colony grid. If you can’t grid your plate yourself, please have someone else set it up for you.

Grid 50 recombinant colonies from the CSH130 X CSH119 cross onto an L plate.

- Place a fresh agar plate on the grid template.
- Be sure to place a mark on the top of your plate so you can reorient the colonies with respect to the grid on Friday. *NOTE: Your should NOT draw a grid on the bottom of the plate.*
- Touch a single colony on the cross plate lightly with the toothpick and then very gently touch/stroke the agar on the grid plate.
- **You should NOT be transferring visible amounts of bacteria.** In other words, a glob is too much.
- Use a different sterile toothpick for each colony.
- Don’t grid a given colony more than once
- Each student should grid 50 colonies
- Incubate plate upside down at 37°C overnight.

THURS NOV 12: Day 3 Transfer colonies to selective media

1. Count and record the number of recombinant colonies on the mating plates. Determine the number of recombinant cells per ml of mating mixture. Record observations on control plates

2. **EACH student should grid each of 50 colonies onto the 5 plates shown in the table below** [4 minimal plates (A-D) with various components added and rich media plus rifamycin (R)]

3. Also grid parental strains (plates will be available in the lab)
Supplements added | Marker selected
--- | ---
Plate A | proline, arginine, uracil
Plate B | proline, arginine, uracil, methionine
Plate C | proline, arginine, uracil, cysteine
Plate D | proline, arginine, uracil, methionine, cysteine
Plate R | Rich media with rifamycin

growth on plate?

<table>
<thead>
<tr>
<th>genotype</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>met+ cys+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>met+ cys G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>met B cys+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>met B cys G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tuesday Nov 17th

Day 4 Determine genotype of each recombinants:

- For each plate type (A-D) determine which markers are being selected for. In other words, which genotypes will or won't grow on each type of plate?
- Also score growth in the presence of rifamycin
- Determine the genotype of each recombinant clone based on its growth on the various media.
- Record your data on the Class Data Sheet
- Retest rare recombinants on a fresh set of selective media