### Bíol/Chem 475 Prímer Desígn Spríng 2007 Generating a 100 bp ladder using phage lambda DNA as template

### FAQS

### What are we doing in lab for the next couple of weeks?

- Week 7: design primers for a 100 bp ladder of PCR products
- Week 8: try primers out; assess PCR results and work up strategy to optimize yield and specificity
- Week 9: each student reruns PCR varying one or two parameters of the reaction

### What's the Point?

• The goal of this exercise is to introduce you to the the basics of primer design and troubleshooting PCR reactions – where artifacts and suboptimal reactions can kill an experiment or, worse yet, provide misleading restuls

Where should I go & What should I do? In this handout

What do I need to hand in? See extra sheet

Appendix A: I thought molecular biologists don't usually care about details like TmAppendices B: Jeff Young's general guidelines for primer designAppendix C: Downloading sequence from NCBI in Fasta Format

### where should 1 go?

NCBI: Obtain template DNA sequence <u>http://www.ncbi.nlm.nih.gov/</u>

Primer-3: Design Primers <a href="http://frodo.wi.mit.edu/">http://frodo.wi.mit.edu/</a>

Sequence Extractor: Display primers on DNA sequence http://bioinformatics.org/seqext/ Sequence Extractor features http://bioinformatics.org/seqext/features.html

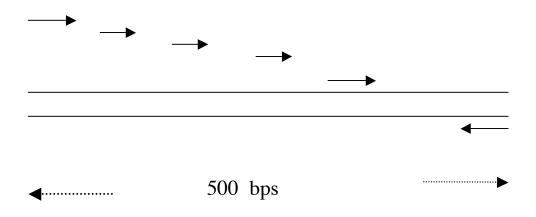
GeneWalker: analyze potential for primer artifacts/interactions http://www.cybergene.se/primerdesign/genewalker/genewalker11.html

GeneWalker Manual <a href="http://www.cybergene.se/primerdesign/help.html">http://www.cybergene.se/primerdesign/help.html</a>

IDT-DNA Another site to analyze primer-primer interactions – gives  $\Delta G$ 's! <u>http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/Default.aspx</u>

Other sites of interest Online PCR TOOLS <u>http://molbiol-tools.ca/PCR.htm</u> Tips on primer design <u>http://www.premierbiosoft.com/tech\_notes/PCR\_Primer\_Design.html</u>

### what's the point?

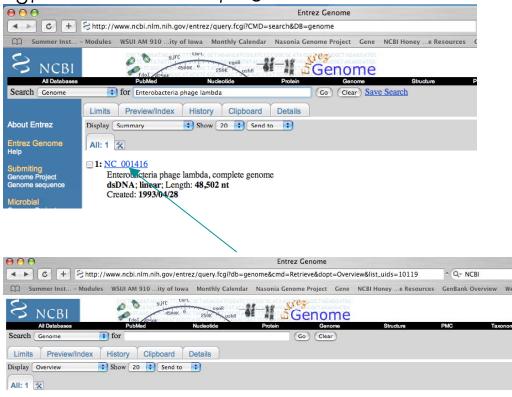

DNA size standards are expensive, so we are going to make our own.

Inexpensive Reagents:TAQ polymerase (buffers, dNTPs),<br/>PCR primers,<br/>DNA template (*lambda bacteriophage*)

**Invaluable:** Your Time. You will be designing primers to amplify, from a single template, a 1000 bp product & a nested set of products 100-500 bps in length in 100 base pair increments &. In other words we want (using 7 or more primers) products of 100, 200, 300, 400, 500 bp, & 1000 [+/- as few bases as possible]. The primers will be used in six different PCR reactions; the products of the reactions will then be combined to make a 100 base pair ladder mix.

### **Suggested strategy:**

- Note that you can pair one primer with more than one partner to generate different sized PCR products and to reduce the number of primers needed
- Start with largest product and generate primers
- Pick one of these primers and look for nested sets (see drawing below)
- if that primer isnt' working out, pick the other outside primer and look for nested sets




### FIRST: GET TEMPLATE SEQUENCE

### Go to National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov/

Choose Genome in the pull down menu

Type in Enterobacteria phage lambda



### <u>Genome</u> > <u>Viruses</u> > Enterobacteria phage lambda, complete genome

Lineage: Viruses ; dsDNA viruses, no RNA stage ; Caudovirales ; Siphoviridae ; Lambda-like viruses ; Enterobacteria phage lambda

| Genome Info:      | Features:                         | BLAST homologs:             | Links:                                 | Review Info:            |
|-------------------|-----------------------------------|-----------------------------|----------------------------------------|-------------------------|
| Refseq: NC_001416 | Genes: 90                         | COG                         | Genome Project                         | Publications: [13]      |
| GenBank: J02459   | Protein coding: 71                | 3D Structure                | Refseq FTP                             | Refseq Status: Reviewed |
| Length: 48,502 nt | Structural RNAs: None             | ТахМар                      | GenBank FTP                            | Seq.Status: Completed   |
| GC Content: 49%   | Pseudo genes: None                | TaxPlot                     | BLAST                                  | Sequencing center:      |
| % Coding: 87%     | Others: 94                        | GenePlot                    | TraceAssembly                          | Completed: 1993/04/28   |
| Topology: linear  | Contigs: 1                        | gMap                        | CDD                                    | Organism Group          |
| Molecule: dsDNA   |                                   |                             | Other genomes for species              |                         |
|                   | Zoom                              |                             |                                        | 4850                    |
| 1 nt              |                                   |                             |                                        | 7,965 nt                |
| nu1               |                                   | В                           | C D                                    | FIL THE T               |
|                   |                                   |                             | nu3                                    |                         |
| Cli               | ick here for Sequence Viewer pre- | sentation (base sequence ar | id aligned amino acids) of selected re | reion                   |
|                   |                                   |                             |                                        | 0                       |
|                   |                                   |                             |                                        |                         |
|                   |                                   | \                           |                                        |                         |
|                   |                                   | $\backslash$                |                                        |                         |
|                   |                                   | $\backslash$                |                                        |                         |

|                                                                              |                                                                                                                         |                                                                                                                         |                                           |                                  | NCBI Sequence Viewer                | v2.0   |                  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------|--------|------------------|
| < ► C                                                                        | + Shttp://                                                                                                              | www.ncbi.nlm.nil                                                                                                        | h.gov/entrez/                             | viewer.fcgi?db=nu                | cleotide&val=9626243                |        |                  |
| CC Summe                                                                     | r Inst Modules                                                                                                          | WSUI AM 910                                                                                                             | ity of Iowa I                             | Monthly Calendar                 | Nasonia Genome Project              | Gene   | NCBI Honey e Res |
|                                                                              | CBI                                                                                                                     | AC IGACTT CGOCC GCT<br>CCCGCGC LATG<br>11-2-1 IV CA<br>ACGC ATCAC                                                       | AGA CATCGGAT<br>GC FATATAC<br>CTTCGCAT    | CAAT ICGGGAGAGGGG                | ATAGGATGATGATGATGA<br>eotide<br>cta |        |                  |
| Search Nucl                                                                  |                                                                                                                         | for                                                                                                                     | Protein                                   | Gen                              | ome Struct                          | ear    | PMC              |
| Search Nuch                                                                  |                                                                                                                         | imits                                                                                                                   |                                           | Preview/Index                    | History                             | ear    | Clipboard        |
| Display Gen                                                                  | Bank ‡ Show                                                                                                             | w 5 \$ Send                                                                                                             | to ‡ Hi                                   | ide: 📃 sequence                  | all but gene, CDS and               | mRNA f | eatures          |
| Range: from                                                                  | begin                                                                                                                   | end                                                                                                                     |                                           | mplemented strand                | Features: + Refres                  |        |                  |
| Kange: from                                                                  | to to                                                                                                                   | enu                                                                                                                     | Reverse co                                | mplemented strand                | reatures. (+) (Kerres               |        |                  |
| ■1: NC 00                                                                    | 1416. Reports En                                                                                                        | terobacteria ph.                                                                                                        | [gi:9626243                               | 31                               |                                     |        |                  |
| _                                                                            | eatures Sequer                                                                                                          |                                                                                                                         | [E1.702024.                               | 4                                |                                     |        |                  |
| <u>comment</u> <u>r</u>                                                      | eatures <u>Sequer</u>                                                                                                   | 100                                                                                                                     |                                           |                                  |                                     |        |                  |
| LOCUS                                                                        | NC_001416                                                                                                               |                                                                                                                         | 3502 bp                                   | DNA linea                        | r PHG 30-MAR-200                    | 6      |                  |
| DEFINITION                                                                   | Enterobacter:<br>NC 001416                                                                                              | ia phage lamb                                                                                                           | oda, comple                               | ete genome.                      |                                     |        |                  |
|                                                                              |                                                                                                                         | GI:9626243                                                                                                              |                                           |                                  |                                     |        |                  |
|                                                                              | NC 001416.1                                                                                                             |                                                                                                                         |                                           |                                  |                                     |        |                  |
| VERSION                                                                      | NC_001416.1<br>GenomeProject                                                                                            |                                                                                                                         |                                           |                                  |                                     |        |                  |
| VERSION<br>PROJECT<br>KEYWORDS                                               |                                                                                                                         |                                                                                                                         |                                           |                                  |                                     |        |                  |
| VERSION<br>PROJECT<br>KEYWORDS<br>SOURCE                                     | GenomeProject<br>Enterobacter:                                                                                          | t: <u>14204</u><br>ia phage lamb                                                                                        |                                           |                                  |                                     |        |                  |
| VERSION<br>PROJECT<br>KEYWORDS                                               | GenomeProject<br>•<br>Enterobacter:<br>Enterobacter:                                                                    | t: <u>14204</u><br>ia phage lamb<br><u>ia phage lamb</u>                                                                | oda                                       |                                  |                                     |        |                  |
| VERSION<br>PROJECT<br>KEYWORDS<br>SOURCE                                     | GenomeProject<br>Enterobacter:<br><u>Enterobacter</u> :<br>Viruses; dsDN                                                | t: <u>14204</u><br>ia phage lamb<br><u>ia phage lamb</u><br>NA viruses, r                                               | oda                                       | ge; Caudoviral                   | .es; Siphoviridae;                  |        |                  |
| VERSION<br>PROJECT<br>KEYWORDS<br>SOURCE<br>ORGANISM                         | GenomeProject<br>Enterobacter:<br><u>Enterobacter</u><br>Viruses; dsDI<br>Lambda-like                                   | t: <u>14204</u><br>ia phage lamb<br><u>ia phage lamb</u><br>NA viruses, r                                               | oda                                       | ge; Caudoviral                   | es; Siphoviridae;                   |        |                  |
| VERSION<br>PROJECT<br>KEYWORDS<br>SOURCE<br>ORGANISM<br>REFERENCE            | GenomeProject<br>Enterobacter:<br><u>Enterobacter</u> :<br>Viruses; dsDI<br>Lambda-like<br>1 (sites)                    | t: <u>14204</u><br>ia phage lamb<br><u>ia phage lamb</u><br>NA viruses, r<br>viruses.                                   | o <u>da</u><br>no RNA staq                | ge; Caudoviral                   | es; Siphoviridae;                   |        |                  |
| VERSION<br>PROJECT<br>KEYWORDS<br>SOURCE<br>ORGANISM                         | GenomeProject<br>Enterobacter:<br><u>Enterobacter</u> :<br>Viruses; dsDI<br>Lambda-like v<br>1 (sites)<br>Chen,C.Y. and | t: <u>14204</u><br>ia phage lamb<br><u>ia phage lamb</u><br>NA viruses, r<br>viruses.<br>d Richardson,                  | oda<br>no RNA stag                        | ge; Caudoviral<br>D-dependent tr |                                     |        |                  |
| VERSION<br>PROJECT<br>KEYWORDS<br>SOURCE<br>ORGANISM<br>REFERENCE<br>AUTHORS | GenomeProject<br>Enterobacter:<br><u>Enterobacter</u> :<br>Viruses; dsDI<br>Lambda-like v<br>1 (sites)<br>Chen,C.Y. and | t: <u>14204</u><br>ia phage lamb<br><u>ia phage lamb</u><br>NA viruses, r<br>viruses.<br>d Richardson,<br>ments essenti | oda<br>no RNA stag<br>J.P.<br>Lal for rho |                                  |                                     |        |                  |

### Scroll (way) down to nucleotide sequence Select and copy your assigned sequence block next page)

| ORIGIN |            |            |            |               |            |            |
|--------|------------|------------|------------|---------------|------------|------------|
| 1      | gggcggcgac | ctcgcgggtt | ttcgctattt | atgaaaattt    | tccggtttaa | ggcgtttccg |
| 61     | ttettetteg | tcataactta | atgtttttat | ttaaaatacc    | ctctgaaaag | aaaggaaacg |
| 121    | acaggtgctg | aaagcgaggc | tttttggcct | ctgtcgtttc    | ctttctctgt | ttttgtccgt |
| 181    | ggaatgaaca | atggaagtca | acaaaaagca | gctggctgac    | attttcggtg | cgagtatccg |
| 241    | taccattcag | aactggcagg | aacagggaat | gcccgttctg    | cgaggcggtg | gcaagggtaa |
| 301    | tgaggtgctt | tatgactctg | ccgccgtcat | aaaatggtat    | gccgaaaggg | atgctgaaat |
| 361    | tgagaacgaa | aagctgcgcc | gggaggttga | agaactgcgg    | caggccagcg | aggcagatct |
| 421    | ccagccagga | actattgagt | acgaacgcca | tcgacttacg    | cgtgcgcagg | ccgacgcaca |
| 481    | ggaactgaag | aatgccagag | actccgctga | agtggtggaa    | accgcattct | gtactttcgt |
| 541    | gctgtcgcgg | atcgcaggtg | aaattgccag | tattctcgac    | gggctccccc | tgtcggtgca |
| 601    | gcggcgtttt | ccggaactgg | aaaaccgaca | tgttgatttc    | ctgaaacggg | atatcatcaa |
| 661    | agccatgaac | aaagcagccg | cgctggatga | actgataccg    | gggttgctga | gtgaatatat |
| 721    | cgaacagtca | ggttaacagg | ctgcggcatt | ttgtccgcgc    | cgggcttcgc | tcactgttca |
| 701    | ~~~~~~~    |            | attasstaaa | aggest get as | ttaatatata | cogooogoot |

➔ You can directly copy the Genbank sequence (numbers and all) and paste it into the Primer3 sequence window. The program will ignore the numbers.

[also see appendix C for alternative way to download sequence]

### OPEN PRIMER 3

http://frodo.wi.mit.edu/

### PASTE LAMBDA SEQUENCE in to source sequence box

| Primer3 (v. 0.3.0) Pick primers from a DNA sequence.                                                                                                                                                                   | Checks for mispriming in template.         d           New/beta (0.4.0) interface         6 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Paste source sequence below (5'->3', string of ACGTNacgtn other letters tre<br>undesirable sequence (vector, ALUs, LINEs, etc.) or use a <u>Mispriming Library</u>                                                     | <b>e</b> ,                                                                                  |
| 1 gggcggcgac ctcgcgggtt ttcgctattt atgaaaattt tccggtttaa ggcgtttccg                                                                                                                                                    | V (repeat hosary). None                                                                     |
| 61 ttettetteg teataaetta atgtttttat ttaaaataec etetgaaaag aaaggaaaeg<br>121 acaggtgetg aaagegagge tttttggeet etgtegttte etttetetgt ttttgteegt<br>181 ggaatgaaea atggaagtea acaaaaagea getggetgae atttteggtg egagtateeg |                                                                                             |
| 241 taccattcag aactggcagg aacagggaat gcccgttctg cgaggcggtg gcaagggtaa<br>301 tgaggtgctt tatgactctg ccgccgtcat aaaatggtat gccgaaaggg atgctgaaat                                                                         | Ţ                                                                                           |

- Tell program to pick right and left primers and indicate product size range
- Keep the size range narrow at first –open only if the program can't find primers in the range that you have set
- Leave defaults setting for other parameters

| Pick left primer,<br>or use left primer below: | Pick hybridization probe (internal oligo), or use oligo below:                                                                                                                                                      |                | <ul> <li>Pick right primer, or use right primer below</li> <li>(5' to 3' on opposite strand):</li> </ul> |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|
|                                                |                                                                                                                                                                                                                     |                |                                                                                                          |
| Pick Primers Reset Form                        |                                                                                                                                                                                                                     |                |                                                                                                          |
| Soupproduct                                    | A string to identify your output.                                                                                                                                                                                   |                |                                                                                                          |
| Targets:                                       | ets: E.g. 50,2 requires primers to surround the 2 bases at positions 50 and 51. Or mark the source sequence with [ and ]ATCT[CCCC]TCAT means that primers must flank the central CCCC.                              |                |                                                                                                          |
| Included           Regions:                    | E.g. 401,7 68,3 forbids selection of primers in<br>sequence with < and >: e.gATCT <cccc:< td=""><td></td><td>arting at 401 and the 3 bases at 68. Or mark the source ids primers in the central CCCC.</td></cccc:<> |                | arting at 401 and the 3 bases at 68. Or mark the source ids primers in the central CCCC.                 |
| Product Size Ranges 495-505                    |                                                                                                                                                                                                                     |                |                                                                                                          |
| Click here to specify the min, opt, a          | and max product sizes only if you absolutely mu                                                                                                                                                                     | st. Using them | n is too slow (and too computationally intensive for our server).                                        |
| Number To Return 5                             | Max 3' Stability 9.0                                                                                                                                                                                                |                |                                                                                                          |
| Max Repeat Mispriming 12.00                    | Pair Max Repeat Mispriming 24.00                                                                                                                                                                                    |                |                                                                                                          |
| Max Template Mispriming 12.00                  | Pair Max Template Mispriming 24.00                                                                                                                                                                                  |                |                                                                                                          |

### General Primer Picking Conditions:

The specificity of amplification of target sequences in a PCR reaction is controlled by the length and sequence of the primer (which affecs Tm) and the annealing temperature used in the PCR run. The sequence of the 3' end of the primer is also important.

- <u>Click on each parameter to view a description just browse</u> <u>through the info here -- we'll come back and explore a couple</u> <u>of these parameters more closely</u>
- Start out using the default values for parameters in this section
- See appendix D for a definition of Tm
- · Ignore Other Per-Sequence Inputs and what follows ...

### **General Primer Picking Conditions**

| Primer Size Min: 18 Opt: 20 Max: 27                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primer Tm Min: 57.0 Opt: 60.0 Max: 63.0 Max Tm Difference: 100.0                                                                                      |
| Product Tm Min: Opt: Max:                                                                                                                             |
| Primer GC% Min: 20.0 Opt: Max: 80.0                                                                                                                   |
| Max Self Complementarity: 8.00 Max 3' Self Complementarity: 3.00                                                                                      |
| <u>Max #N's:</u> 0 <u>Max Poly-X:</u> 5                                                                                                               |
| Inside Target Penalty: 0 Note: you can set Inside Target Penalty to allow primers inside a target.                                                    |
| First Base Index:     1     CG Clamp:     0                                                                                                           |
| Salt Concentration: 50.0 Annealing Oligo Concentration: 50.0 (Not the concentration of oligos in the reaction mix but of those annealing to template, |
| 🗹 Liberal Pase 🗆 Show Debuging Info 🗐 Do not treat ambiguity codes in librarias as consensus                                                          |

🗹 Liberal Base 🔲 Show Debuging Info 🗹 Do not treat ambiguity codes in libraries as consensus

Pick Primers Reset Form

→ Tell program to pick primers and then carefully inspect the primer-3 output – be sure to scroll down to the bottom of the page
Primer3 Output

WARNING: Numbers in input sequence were deleted.

No mispriming library specified Using 1-based sequence positions OLIGO <u>start len tm gc% any 3' seq</u> LEFT PRIMER 2260 20 59.73 55.00 4.00 0.00 gtacggataccgcgaaagag RIGHT PRIMER 2457 20 60.30 50.00 5.00 3.00 gcttttgctgtcccacagt SEQUENCE SIZE: 4080 INCLUDED REGION SIZE: 4080 PRODUCT SIZE: 198, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 3.00 NOTE info a bottom of output page

ADDITIONAL OLIGOS start len tm gc% any 3' seg 1556 20 60.53 55.00 6.00 2.00 ccagcaggagctggacttta 1760 20 59.93 45.00 2.00 1.00 cgtatcccctttcgttttca 1 LEFT PRIMER RIGHT PRIMER PRODUCT SIZE: 205, PAIR ANY COMPL: 3.00, PAIR 3' COMPL: 1.00 2 LEFT PRIMER 625 20 59.50 45.00 6.00 2.00 ccgacatgttgatttcctga 823 20 59.89 45.00 6.00 2.00 taattagcatccgcccattc RIGHT PRIMER PRODUCT SIZE: 199, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 2.00 1230 20 59.82 50.00 5.00 3.00 gtggcgggttatgatgaact 1427 20 59.57 40.00 4.00 1.00 ggcaacatgaaaacgcataa 3 LEFT PRIMER RIGHT PRIMER PRODUCT SIZE: 198, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 1.00 1032 20 60.08 50.00 3.00 3.00 gatggtgatgccgagaactt 4 LEFT PRIMER 1227 20 60.54 55.00 4.00 1.00 ccaccgacttttcacggtag RIGHT PRIMER PRODUCT SIZE: 196, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 1.00 Statistics too in in con no tm tm high high high sid many tar excl bad GC too too any 3' poly end ered Ns get reg GC% clamp low high compl compl X stab ok Left 31766 0 0 0 319 0 3614 22272 0 16 105 760 4680 0 0 0 188 0 103 721 4652 Right 32185 0 3243 23274 4 Pair Stats: considered 20667, unacceptable product size 20643, high end compl 2, ok 22 primer3 release 1.1.0 • What do any, 3', pair any compl and pair 3' comple refer to?

- How do the alternate primer picks (additonal oligos) differ from the "chosen" primer?
- Note the statistics which indicates the number of primer candidates examined and why the primer was rejected

→ If you are OK with the primer pick, copy the info shown on previous page and paste it into a word file – keep Courier 10 font so the collums will stay aligned.

### ➔ Píck your second prímer paír

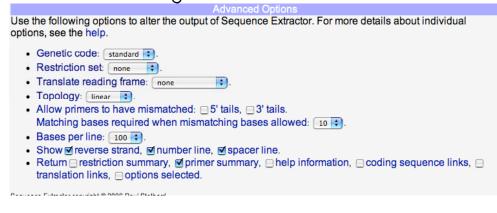
This time enter your left or right primer from above, and tell program to find the right or left primer

→ Don't forget to enter a new product size

## → Repeat instructions from above -don't forget to copy the primer 3 output info for each primer pair.

What if Primer 3 can't find acceptable an acceptable primer or primer pair?

- First examine the statistics to get clues as to what the limitations are
- Look at general primer picking parameters and make some conservative adjustments
- You can open the size range limits, but too big a size window will make the 100bp ladder less useful
- Try the other outside primer
- NOTE: exert a little effort here to generate nested PCR products -- the fewer primers you need for your ladder, the better


# REpeat until you have primer pairs that will generate 100,200,300,400,500 and 1000bp products

➔ In your word document, name your primers and make a list of each unique primer . In Appendix B, there are primer design rules put together by Jeff young. Do your primer sequences meet the standards suggested in this appendix? Briefly summarize your assessment

### Go to Sequence Extractor and align primers on sequence:

Sequence Extractor: Display primers on DNA sequence <u>http://bioinformatics.org/seqext/</u> Sequence Extractor features <u>http://bioinformatics.org/seqext/features.html</u>

- First clear primer and sequence box
- Paste in your sequence and your primer list as instructed
- Tell program that you don't want the sequence translated
- Don't allow any mismatches



### carefully examine output:

| NdeII<br>gatcgtctgatgcaggggggcac                                         | HpaII<br>MspI<br>cggcaccgct<br>^5670                                                 |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| IdeII<br>gatcgtctgatgcagggggcac<br>^5650 ^5660<br>gtagcagactacgtcccccgtg | MspI<br>cggcaccgct<br>^5670                                                          |
| IdeII<br>gatcgtctgatgcagggggcac<br>^5650 ^5660<br>gtagcagactacgtcccccgtg | MspI<br>cggcaccgct<br>^5670                                                          |
| yatcgtctgatgcagggggcac<br>^5650 ^5660<br>ptagcagactacgtcccccgtg          | cggcaccgct<br>^5670                                                                  |
| ^5650 ^5660<br>stagcagactacgtcccccgtg                                    | ^5670                                                                                |
| ctagcagactacgtcccccgtg                                                   |                                                                                      |
|                                                                          | gccgtggcga                                                                           |
| ACCA 3' 1001                                                             |                                                                                      |
| ACCA 3' 100T.                                                            |                                                                                      |
| 10011 0 1001                                                             |                                                                                      |
| sition=5712 100L >>> direction                                           | 1 >>>                                                                                |
|                                                                          |                                                                                      |
|                                                                          |                                                                                      |
|                                                                          |                                                                                      |
| ^5730 ^5740                                                              | ^5750                                                                                |
| tggtcacattccctacaaatac                                                   | tgctcgtttc                                                                           |
|                                                                          |                                                                                      |
| 3 5' 500R                                                                |                                                                                      |
| HpaII                                                                    |                                                                                      |
| MspI                                                                     |                                                                                      |
|                                                                          | accagtgtaagggatgtttatg<br>^5730 ^5740<br>ggtcacattecetacaaatac<br>; 5' 500R<br>HpaII |

Inspect alignments

- Capture desktop picture of part of alignment (as above) and paste into word file
- Capture primer summary (below) and past into word document

| Primer Summary                                                                 |  |
|--------------------------------------------------------------------------------|--|
| 100L ACGATTTGCTGAACACCA: 5712.                                                 |  |
| 200L CAGCACCACAGAGTGCACA: 5607.                                                |  |
| 300L TTATGGGGATCCTCAACTGT: 5499.                                               |  |
| 400R ATCAGATGCCGGGTTACCT: -5705.                                               |  |
| 500L GATGCACGTAAATCCCGTCT: 5309.                                               |  |
| 500R GTATGAGCCGGGTCACTGTT: -5809.                                              |  |
| equence Extractor copyright © 2006 Paul Stothard<br>mail: stothard@ualberta.ca |  |

An ideal set of primer should anneal efficiently with the target template sequences and not with other template sequences or with each other. The Primer 3 program assesses the ability of primer pairs to hydrogen bond with each other at the 3' end (serving potentially as templates for DNA pol) or generally with each other at any position.

The maximum allowable local alignment score when testing a single primer for (local) self-complementarity and the maximum allowable local alignment score when testing for complementarity between left and right primers. Local self-complementarity is taken to predict the tendency of primers to anneal to each other without necessarily causing self-priming in the PCR. The scoring system gives 1.00 for complementary bases, -0.25 for a match of any base (or N) with an N, -1.00 for a mismatch, and -2.00 for a gap. Only single-base-pair gaps are allowed. For example, the alignment

5' ATCGNA 3'

3' TA-CGT 5'

is allowed (and yields a score of 1.75), but the alignment

5' ATCCGNA 3'

3' TA--CGT 5'

is not considered. Scores are non-negative, and a score of 0.00 indicates that there is no reasonable local alignment between two oligos.

### Max 3' Complementarity

The maximum allowable 3'-anchored global alignment score when testing a single primer for self-complementarity, and the maximum allowable 3'-anchored global alignment score when testing for complementarity between left and right primers. The 3'-anchored global alignment score is taken to predict the likelihood of PCR-priming primer-dimers, for example

```
5' ATGCCCTAGCTTCCGGATG 3'
         3' AAGTCCTACATTTAGCCTAGT 5'
or
5 AGGCTATGGGCCTCGCGA 3'
            3' AGCGCTCCGGGTATCGGA 5'
```

The scoring system is as for the Max Complementarity argument. In the examples above the scores are 7.00 and 6.00 respectively. Scores are non-negative, and a score of 0.00 indicates that there is no reasonable 3<sup>i</sup>-anchored global alignment between two oligos. In order to estimate 3<sup>i</sup>-anchored global alignments for candidate primers and primer pairs, Primer assumes that the sequence from which to choose primers is presented 5'->3'. It is nonsensical to provide a larger value for this parameter than for the Maximum (local) Complementarity parameter because the score of a local alignment will always be at least as great as the score of a global alignment. ( D )

### Go to Genewalker and analyze one pair of primers in detail

GeneWalker: analyze potential for primer artifacts/interactions http://www.cybergene.se/primerdesign/genewalker/genewalker11.html GeneWalker Manual http://www.cybergene.se/primerdesign/help.html

Pick a primer pair that with non-zero values here and with primers that have different any and  $\underline{s'}$  values. Have Genewalker show you primer dimer interactions.

|                            |       |        |       |       |      | $\backslash$ |                      |
|----------------------------|-------|--------|-------|-------|------|--------------|----------------------|
| OLIGO                      | start | len    | tm    | go%   | any  | \ 3'         | seq                  |
| LEFT PRIMER                | 5309  | 20     | 59.96 | 50.00 | 6.00 | 0.00         | GATGCACGTAAATCCCGTCT |
| RIGHT PRIMER               | 5808  | 20     | 60.00 | 55,00 | 8.00 | 1,00         | GTATGAGCCGGGTCACTGTT |
| SEQUENCE SIZE: 48502       |       |        |       |       |      |              |                      |
| INCLUDED REGION SIZE: 8000 |       |        |       | 4     |      |              |                      |
|                            |       |        |       |       |      |              |                      |
|                            |       | 7 3777 |       |       |      | OMDT .       | 2 00                 |

PRODUCT SIZE: 500, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 2.00

|                       | Order oligo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                       | Primer/Target alignn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|                       | Clear results<br>Clear results<br>Cl | 3'<br>60 |
| Primer 1 sequenc      | Primer dimer GATGCACGTAAATCCCGTCT 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| GATGCACGTA AATCCCGTCT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u.       |
|                       | Clear primer       5'======       Align comparative:         Rev compl 1       20       30       40         1       TCTGCCCTAAATOCACCTAG       10       50         2:ary struct 1       onTOCACOTAAATOCACOTAG       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3'<br>60 |
| Primer 2 sequenc      | Anneal 1 5' Align comparative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3'<br>60 |
| GATGCACGTA AATCCCGTCT | Clear primer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.<br>•  |
|                       | Rev compl 2<br>2:ary struct 2<br>GengWalk(<br>CyberGene<br>DN ambril and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|                       | Anneal 2 DNA analysis and bioinformatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |

LEFT Primer annealing with itself -- ask for primer dimer

For each indicate the 5' and 3' ends Which interaction would amplify in a PCR reaction? Repeat with RIGHT Primer annealing with itself

| Let | AI | and | right | prímers | with | each | other |
|-----|----|-----|-------|---------|------|------|-------|
|     |    |     |       |         |      |      |       |

| 1 3 1                 | Format         |                                              |      |
|-----------------------|----------------|----------------------------------------------|------|
|                       | Order oligo    |                                              |      |
|                       | HELP           |                                              |      |
|                       |                | Primer/Target alignn                         |      |
|                       |                | 5'3'                                         | 0    |
|                       | Clear results  | 1 10 20 30 40 50 60<br>TCTGCCCTAAATGCACGTAG  |      |
| Primer 1 sequenc      | Primer dimer   | <br>GTATGAGCCGGGTCAC-TGTT 23                 |      |
| GATGCACGTA AATCCCGTCT |                |                                              | U    |
|                       | Clear primer   | 5'===== Align comparative: ======3'          |      |
|                       | Rev compl 1    | 1 10 20 30 40 50 60<br>TCTGCCCTABATG-CACGTAG | - 11 |
|                       |                |                                              |      |
|                       | 2:ary struct 1 | GTATGAGCCGGG==TCACTGTT 22                    |      |
|                       | Anneal 1       |                                              |      |
| Primer 2 sequenc      |                | 5'3'                                         |      |
| GTATGAGCCG GGTCACTGTT |                | 1 10 20 30 40 50 60<br>TCTGCCCTAAATGCACGTAG  |      |
|                       | Clear primer   | GTATGAGCCGGGTCAC-TGTT 25                     |      |
|                       | Rev compl 2    |                                              | Y    |
|                       |                | OtherCana                                    |      |
|                       | 2:ary struct 2 | GeneWalke CyberGene                          |      |
|                       | Anneal 2       | DNA analysis and<br>bioinformatics           |      |

### PRIMER intrastrand STRUCTURE

Paste in your primer sequence and ask for primer structure

The structure will be coded as shown  $\smallsetminus$ 

Go to genewalker help and draw out the structural meannig of this code -

first two línes

| Target sequence       |                           | Rrimer structure                                                                                                                                                                                |
|-----------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Clear all<br>Clear target | [GAT_GC[ACGT]AA[ATC]CCGTCT<br>GATGC[ACG]TA[A]A[T]CC[CGT]CT<br>GAT[G]C[A]CG[TA]AA[T]C[C]CGTCT<br>GA[TGCA]CGTAAATCCCGTCT<br>[GA]T[G]CACG[T]A[A]ATCC[C]G[TC]T<br>GAT[G]CACC[G]T[A]AA[T]C[C]CGT[C]T |
|                       | Sequence<br>Format        | GA[T]G[C]AC[G]T[A]AATCCCGTCT<br>G[A]T[G]CA[C]G[T]AAATCCCGTCT<br>GATGCACGTAAATCC[CG]TCT<br>GATGCACGTAA[AT]CCCGTCT                                                                                |
|                       | Order oligo               |                                                                                                                                                                                                 |
|                       | HELP                      |                                                                                                                                                                                                 |
|                       |                           | Primer/Target alignn                                                                                                                                                                            |
|                       | Clear results             |                                                                                                                                                                                                 |
| Primer 1 sequenc      | Primer dimer              |                                                                                                                                                                                                 |
| GATGCACGTA AATCCCGTCT |                           |                                                                                                                                                                                                 |
|                       | Clear primer              |                                                                                                                                                                                                 |
|                       | Rev compl 1               |                                                                                                                                                                                                 |
|                       | 2:ary struct 1            |                                                                                                                                                                                                 |

OPTIONAL for those who want to do more

Go to IDT-DNA Another site to analyze primer-primer interactions Hey, this site will gives the  $\Delta G$ 's of the interactions! <u>http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/Default.aspx</u>

### **Appendix A** What is Tm and why is it important?

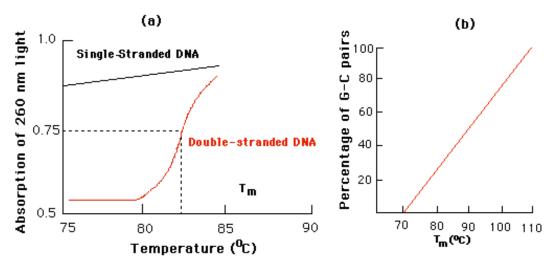



Fig. (a) The absorption of ultraviolet light of 260-nm wavelength by solutions of single-stranded and double stranded DNA. As regions of ds-DNA unpair, the absorption of light by those regions increases almost twofold. The temperature at which half the bases in a ds-DNA sample have denatured is denoted  $T_m$ (for temperature melting). Light absorption by single-stranded DNA changes much less as the temperature is increased. (b) The  $T_m$  is a function of the G + C content of the DNA; the higher the G + C percentage, the greater the  $T_m$ .

For primers shorter than 20 bases,  $T_m$  can be calculated as  $T_m = 4(G + C) + 2 (A + T)$ .

- Single base mismatches can significantly lower the Tm of the primertemplate.
- Mismatch tolerance between template and primer -- is the 5' or 3' end the most critical?

Read about annealing temp and primer design at this site <u>http://www.mcb.uct.ac.za/pcroptim.htm</u>

Appendix B Here is a slightly different take on designing prime primers from Jeff Young:

### **Primers**

- ◆ Length: Long (29 bp)
- 1. G's or C's allowed at positions number 28 and 29 (3' end of primer):

### Zero or One

| ${ m nnnnnnnnnnnnnnnnnnnnnnnGC}$  |  |
|-----------------------------------|--|
| nnnnnnnnnnnnnnnnnnnnnnnn ${f TG}$ |  |

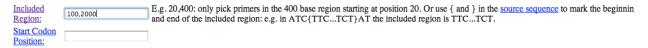
- 1. GC content of primer: 34% to 50%
- TM: Don't worry about TM. If the primer is designed as above, TM will be in operable range.
- 2. Use 65° annealing temperatures for these primers.

### Avoid High G+C content at the 3' end of the primer

- avoid G+C > 50% in the 3' end (10 bp),
- avoid clusters of nucleotides, especially Gs and Cs.

### Appendix C

### Downloading sequence from NCBI OR select FASTA format and send to TEXT


| -   | > C      |         | Shttp:   | //www.i | ncbi.nln | n.nih.go | ov/enti | ez/vie | wer.fc  | gi?db= | nucle  | otide&d | qty=1&c_ | star |
|-----|----------|---------|----------|---------|----------|----------|---------|--------|---------|--------|--------|---------|----------|------|
| Π   | ] Summ   | er Inst | - Module | s WSU   | I AM 91  | 0ity     | of lowa | Moi    | nthly C | alenda | r Na   | sonia ( | Genome P | roje |
| >gi | 962624   | 3 ref 1 | NC_0014  | 16.1    | Enter    | obact    | eria    | phage  | lam     | oda,   | compl  | lete g  | genome   |      |
| CCC | CGGCGAC  | CTCGCG  | GTTTTC   | GCTATT  | TATCA    | AAATT    | TTCCG   | GTTTA  | AGGCO   | TTTC   | CGTTC  | TTCTT   | DCG      |      |
| TCA | ТААСТТА  | ATGTTT  | TTATTA   | АААТАС  | CCTCT    | GAAAA    | GAAAG   | GAAAC  | GACAG   | GTGC   | TGAA   | GCGAG   | GC       |      |
| TTT | TTGGCCT  | CTGTCG  | TTTCCTT  | TCTCTG  | TTTTT    | GTCCG    | TGGAA   | TGAAC  | AATG    | GAAGT  | CAAC   | AAAA    | SCA      |      |
| GCT | GGCTGAC  | ATTTTC  | GGTGCGA  | GTATCC  | GTACC    | ATTCA    | GAACT   | GCAG   | GAAC!   | AGGGA  | ATGCO  | CGTTO   | CTG      |      |
| CGA | GCCCGTC  | GCAAGG  | GTAATGA  | GGTGCT  | TTATG    | ACTCTO   | sccsc   | CGTCA  | TAAA    | ATGGT  | ATGCO  | GAAAG   | 3GG      |      |
| ATG | CTGAAAT  | TGAGAA  | CGAAAAG  | стесес  | CGGGA    | GGTTG    | AAGAA   | CTGCG  | GCAGO   | CCAG   | CGAGO  | CAGAI   | TCT      |      |
| CCA | GCCAGGA  | ACTATT  | GAGTACG  | AACGCC  | ATCGA    | CTTAC    | CCTC    | CGCAG  | GCCG    | ACGCA  | CAGG   | ACTG    | AAG      |      |
| ААТ | GCCAGAG  | ACTCCG  | CTGAAGT  | GGTGGA  | AACCG    | CATTC    | TGTAC   | TTTCG  | TGCT    | TCGC   | GGAT   | GCAGO   | STG      |      |
| AAA | TTGCCAG  | TATTCT  | CGACGGG  | стессе  | CTGTC    | GGTGC    | AGCGG   | CGTTT  | TCCG    | GAACT  | GGAA   | ACCG    | ACA      |      |
| IGT | TGATTTC  | CTGAAA  | CGGGATA  | TCATCA  | AAGCC    | ATGAA    | CAAAG   | CAGCC  | GCGC1   | IGGAT  | GAACI  | GATAC   | CCG      |      |
| GGG | TTGCTGA  | GTGAAT  | ATATCGA  | ACAGTO  | AGGTT    | AACAG    | GCTGC   | GCAT   | TTTG    | rccgc  | GCCGG  | GCTTO   | CGC      |      |
| rca | CTGTTCA  | GGCCGG  | AGCCACA  | GACCGC  | CGTTG    | AATGG    | GCGGA   | TGCTA  | ATTA    | TATC   | TCCCC  | AAAGA   | AAT      |      |
| CCG | CATACCA  | GGAAGG  | CCCTCC   | GAAACA  | CTGCC    | CTTTC    | AGCGG   | CCAT   | CATG    | ATGC   | GATGO  | GCAGO   | CGA      |      |
| ста | CATCCGT  | GAGGTG  | AATGTGG  | TGAAGT  | CTGCC    | CGTGT    | CGGTT   | ATTCC  | AAAA    | IGCTG  | CTGGG  | TGTT    | TAT      |      |
| scc | TACTTTA  | TAGAGC  | ATAAGCA  | GCGCAA  | CACCC    | TTATC    | TGGTT   | GCCGA  | CGGAT   | IGGTG  | ATGCO  | GAGA    | ACT      |      |
| гта | TGAAAAC  | CCACGT  | IGAGCCG  | ACTATT  | CGTGA    | TATTC    | CGTCG   | CTGCT  | GGCGG   | TGGC   | CCCG   | GGTAT   | IGG      |      |
| CAA | AAAGCAC  | CGGGAT  | AACACGC  | TCACCA  | TGAAG    | CGTTT    | CACTA   | ATGGG  | CGTG    | CTTC   | TGGTO  | CCTGO   | GC       |      |
| GT  | AAAGCGG  | CAAAAA  | ACTACCG  | TGAAAA  | GTCGG    | TGGAT    | GTGGC   | GGGTT  | ATGAT   | GAAC   | TTGC   | GCTTT   | TTG      |      |
|     | Ame Amam | TCAACA  | GGAAGGC  | TOTOCO  | ACCUT    | COMOCO   | CTCAC   | AACCG  | ጣልጥጥ    | 12200  | CTTCCC | memee   | 200      |      |

If you paste the entire genome sequence in IN PRIMER 3, Primer3 Input (primer3 /input.htm version 0.3.0 modified for WI) Primer3 (v. 0.3.0) Pick primers from a DNA sequence.

then you will need to limit the primer sequence to your assigned sequence block as follows:

Ger

### Scroll down to other sequence input Other Per-Sequence Inputs

