Mendel Revisited:	Distribution a	of Genotypes	of Wildtype	F2 hermaphrodites
-------------------	----------------	--------------	-------------	-------------------

Initials	Uu Dd	Uu DD	UU Dd	UU DD	him trait?	
1GP	3	5	0	3	2 F2 moms	
2 IO	5	0	6	1	3	
3 WF	6	3	2	1	2	
4 KS	7	2	2	1		
5KH	3	3	1	5*	0	
6AG	5	4	1	2	-	
7MO	4	3	3	2	-	
8TCD	5	2	3	2	-	
9NB	4	3	4	1		
10RK	6	3	0	3		
11 JRB	5	3	2	2	5	
12KGB	6	2	2	2	1	
13KAH	5	2	4	1		
14JY	8	4	0	0	-	
15GLK	6	3	0	3		
16BK	6	2	3	1	8	

D = wild - type allele d = mutant allele

* F3 progeny on the young side

GROUP		UuDd	UuDD	UUDd	UU DD	n	χ ²	р
	Expected ratio	4	2	2	1			
IO, KS,	Raw data	21	7	14	6	48	2.390	0.187
MO,TD	Observed	3.5	1.16	2.33	1			
	Ratio							
AG, JY,	Raw data	24	13	7	4	48	1.813	0.758
KH, B	Observed	6	3.25	1.75	1			
	Ratio							
GP,GK,	Raw data	19	13	6	9	47	6.68	0.0828
BK,JRB	Observed Ratio	2.11	1.44	0.66	1			
KH, RH, NB, KB	Raw data	19	11	7	11	48	7.586	0.1>p >0.05
	Observed Ratio	1.7	1	0.6	1			
Class totals	Raw data							
	Observed Ratio				1			

Mendel Revisited: *Distribution of Genotypes of Wildtype F2 hermaphrodites* U = wild-type allele u = mutant allele D= wild-type allele d = mutant

Observed ratio- to the nearest one decimal place

Interpreting the results of a chi square analysis

p value > 0.05

- Your hypothesis may be correct and any differences between O and E due to chance.
- On the other hand, a p value > 0.05 Does NOT prove your hypothesis as competing hypotheses may also have a p value that is > 0.05.....

$p \text{ value} < \overline{0.05}$

- Your hypothesis may be incorrect. The difference betwee E & O is not due to chance but due to an incorrect hypothesis. If we decide to reject the hypothesis based on the chi square analysis, what do we do or ask next?
- On the other hand, a p value < 0.05 does NOT disprove your hypothesis. Your hypothesis may be correct and something else is going that results in a difference between O and E that is not due to just to chance. We're not going to throw out our hypothesis just yet but:

What should you do next? Where would you go from here to resolve the problems? What could that something else be?