
George et al.4 (page 975) identify one of 
the same four germline mutations1–3 in 2 of 
96 patients with apparently sporadic neuro-
blastoma (as other members of the families to 
which these two individuals belonged were not 
examined). Moreover, these studies1–4 report 
that 59 of 617 (9.6%) sporadic neuroblastoma 
cases they investigated have somatic single-
nucleotide mutations in ALK. Such somatic 
mutations were associated with more aggres-
sive tumours and lethal cases of this cancer. 

These studies1–4 also found that, in contrast 
to normal ALK, the mutated enzyme was vari-
ably phosphorylated and had increased kinase 
activity in a mutation-specific way. Similarly, 
downstream targets of ALK were activated by 
the mutations in this enzyme in a mutation-
dependent manner. Could the increased activ-
ity of ALK in neuroblastoma be inhibited for 
treatment purposes? For example, a leucine 
for arginine substitution at position 1174 of 
ALK results in phosphorylation of the STAT3 
and AKT proteins, whereas the replacement 
of arginine by glutamine at position 1275 was 
associated with phosphorylation of AKT and 
the ERK1/2 protein. Although these data hint 
that ALK inhibition3,4 could be a viable strat-
egy for the treatment or prevention of neuro-
blastoma, they also indicate that multi-agent 
targeted therapy as well as nonspecific kinase 
inhibitors make sense, given that multiple 
signalling pahways consisting of several kinases 
are involved.

Mossé et al.1 and Janoueix-Lerosey et al.2 find 

that although members of 6 of the 16 families 
they examined do not harbour mutations 
in ALK and PHOX2B, neuroblastoma runs 
in these pedigrees. At least three possibili-
ties, which are not mutually exclusive, could 
explain these observations. First, mutations in 
other genes, such as MYCN, might be involved. 
Second, because ALK-mediated neuroblast-
oma involves increased activity of this protein, 
germline mutations in promoter sequences that 
favour ALK expression are possible. 

Third, large genomic deletions and re-
arrangements could occur in the germ line.
Somatic translocations involving ALK have 
been reported8, and so germline rearrange-
ments in the sequence of this gene are also 
plausible. ALK deletions associated with neu-
roblastoma seem counter-intuitive, however, 
because it is increased ALK activity — rather 
than its absence — that seem to lead to this 
cancer. But germline deletions in regions con-
taining repressors of ALK expression, as well 
as partial deletions creating ALK-like pro-
teins, new proteins distinct from ALK, or con-
tinuously active kinases, are among plausible 
mechanisms.

Chen et al.3 and Mossé and colleagues1 
provide evidence that somatic ALK muta-
tions associate with aggressive forms of neuro-
blastoma in sporadic cases. Several questions 
arise from these observations. For example, 
will somatic mutations make ALK-associated 
familial neuroblastoma more aggressive? If 
the answer is yes, should adjuvant therapy — 

perhaps ALK inhibitors — accompany surgi-
cal removal of the tumour? Could it be that 
ALK inhibition is toxic rather than beneficial 
in cancer cases caused by germline muta-
tions? After all, every single cell in the body 
will carry the mutation, albeit with differential 
expression in different tissues.

The past two years have seen an explosion in 
genome-wide association studies, which have 
shown that variations of certain genes with low 
penetrance account for a small subset of vari-
ous common cancers. At present, these data are 
not associated with much clinical context, and 
so cannot meaningfully contribute to genetic 
counselling and cancer management. In this 
era of genomic medicine, the long-awaited 
discovery of a major non-syndromic neuro-
blastoma gene1–4 is indeed a welcome advance 
for taking pre-emptive measures (Box 1).  ■
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Since 1620, when Francis Bacon’s Novum 
Organum set out the basic guidelines, the 
task of science has been to condense multiple 
observations into brief, general descriptions 
of natural phenomena. This process, called 
induction, helps us understand and predict 
the world around us. Enquiries into the lim-
its of science1 have involved asking questions 
such as “Can we know everything about the 
natural world?”, which have so far gone unans-
wered. Writing in Physica D, David Wolpert2 
has made headway in this direction by demon-
strating that the entire physical Universe can-
not be fully understood by any single inference 
system that exists within it. 

Various major scientific developments of the 
twentieth century have placed limits on dif-
ferent facets of knowledge. These include the 
measurement pro cess (quantum mechanics, 

through Heisenberg’s uncertainty principle); 
the transmission of information (relativity, 
through the constancy of the speed of light); 
the ability to predict the future from less-
than-perfect measurements in the present 
(chaos theory, through sensitive dependence 
on initial conditions); and the efficient pre-
diction3 of certain natural phenomena before 
they unfold (complex systems theory, through 
intractability). 

Wolpert’s work follows another path, that 
of Kurt Gödel and Alan Turing’s theorems of 
incompleteness developed in mathematics and 
computation (Box 1), and he extends them to 
address the logic of science. He introduces 
the idea of inference machines — physical 
devices that may or may not involve human 
input — that can measure data and perform 
computations, and that model how we come to 
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Theories of almost everything
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A provocative contribution to the logic of science extends the theorems 
of Kurt Gödel and Alan Turing, and bears on thinking about prediction, 
the standard model of particles, and quantum gravity. 

understand and predict nature. He develops 
a formal description of all such inference 
machines in terms of two functions: one stipu-
lates the initial state of a machine (the set-up 
function) and the other (the conclusion func-
tion) describes the observations, recollections 
or predictions it makes — in other words, a 
‘theory’. 

In proving his theorems,Wolpert defines 
U as the space of all world-lines (sequences 
of events) in the Universe that are consistent 
with the laws of physics. He then defines strong 
inference as the ability of one machine to pre-
dict the total conclusion function of another 
machine for all possible set-ups. Finally, he 
uses ‘Cantor diagonalization’ (Box 1) to prove, 
among others, the following two statements:

(1) Let C1 be any strong inference machine 
for U. There is another machine, C2, that can-
not be strongly inferred by C1.

(2) No two strong inference machines can be 
strongly inferred from each other.

The first of these statements posits that 
there is a portion of ‘knowledge space’ (that 
inferable by C2) that is not available to any C1 
machine. The second is a statement about the 
non-equivalence of inference machines; it 
implies that, at most, only one machine at one 
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far a meaningless theory. It is possible, though, 
that these various theories, along with all that 
we have learned in physics and other scientific 
disciplines, will yet merge into the best science 
can do: a theory of almost everything. ■
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instant in time can infer all others. The two 
statements together imply that, at best, there 
can be only a ‘theory of almost everything’. 
Hence, they slam the door on Pierre-Simon 
Laplace’s ‘demon’, introduced in 1814. This 
hypothetical being has a “vast intellect”, such 
that, with full knowledge of the state of the 
Universe at one time, it can completely predict 
the future and recall the past with no uncer-
tainty whatsoever. Wolpert’s results are par-
ticularly compelling because they are totally 
independent of both the details of the laws of 
physics and the computational characteristics 
of the machines.

What are the practical consequences of 
these findings for science? A prescription 
for deriving the laws of nature was proposed 
by Roy Frieden4 a few years ago. He asserted 
that any attempt to measure a physical quan-
tity elicits a transfer of information from the 
‘source’ physical phenomenon to the observer. 
As a consequence, the observation of a physical 
phenomenon cannot be entirely accurate. By 
manipulating ‘Fisher information’, a measure 
of the quality of data, one can obtain informa-
tion about the equations that govern the phe-
nomenon in addition to the numerical value 
one seeks. Most fundamental equations of 
physics can be derived in this way (thus mak-
ing physics a minor branch of statistics!). But 
Wolpert’s work warns us that Frieden’s recipe is 
bound to fail at least once, perhaps by produc-
ing multiple solutions in certain cases.

Another example of the relevance of Wolp-
ert’s work to science is in predicting the behav-
iour of chaotic systems. Through the attractor 
reconstruction method, in which a time series 
is converted into a geometrical trajectory in 
higher-dimensional spaces5, one can forecast 
the evolution of fairly complex systems up to 
a specified prediction horizon. This method 
works quite well, and does not need the explicit 
knowledge of the system’s governing equa-
tions (see ref. 6 for an astrophysical example). 
However, when one tries to infer the equa-
tions themselves, the results are often unclear 
or ambiguous7, possibly as a manifestation of 
Wolpert’s theorems.

Finally, Wolpert’s findings have a bearing 
on the possible limitations of two theories in 
physics. One set of limitations concerns the 
standard model of particle physics, which has 
accumulated a long list of shortcomings8: these 
include an exceedingly high predicted cosmo-
logical constant, failure to predict the mass of 
the Higgs particle, and failure to account for 
the ‘dark matter’ in the Universe. The other 
limitation is our inability to bring quantum 
mechanics and gravity into a single theory, 
although several viable alternative theories 
are being studied9. Quantum electrodynam-
ics, a refinement of quantum mechanics, is 
defined by just two parameters (the charge 
and mass of the electron), whereas quan-
tum gravity would require infinitely many 
parameters, and hence infinite experiments 
to determine those parameters, making it so 

Complex eukaryotes, such as animals, have 
extensive RNA splicing to remove sequences 
that don’t encode proteins (introns) and to 
connect those that do (exons). Often, several 
messenger RNAs can be generated by a single 
gene, because different patterns of splicing 
place different exons into the final mRNAs. 
As an example, the Dscam gene of the fruitfly 
Drosophila contains 24 exons, and is thought 
to encode 38,016 different protein isoforms by 
alternative splicing (although we’re not sure 
anyone has counted)1. In this particular case, 
‘docking’ and ‘selector’ sequences within the 
primary transcript help regulate splicing. But 
in general, understanding exactly how a cell 
picks and chooses among the many possible 
combinations of splices has been a long-stand-
ing problem2. Reporting on page 997 of this 
issue, Moldón et al.3 investigate how a gene’s 
promoter region — the sequence that regulates 

gene expression — can regulate splicing.
As ever, one approach is to work with a 

simpler eukaryote. The fission yeast Schizo-
saccharomyces pombe has a sophisticated splic-
ing apparatus, and regulates splicing, although 
this regulation is somewhat different from 
that in more complex eukaryotes. In the lat-
ter, introns are humongous, and the splicing 
system may therefore focus on recognizing the 
relatively small exons. When splicing is altered, 
it may fail to recognize an exon, leaving that 
exon out of the final product, and giving alter-
native splicing. In yeast, introns are tiny, and the 
splicing system seems to focus on recognizing 
the introns. Thus, when splicing is altered, the 
system may fail to recognize an intron, retain-
ing the intron in the final product. Whatever 
the reason, the usual nature of regulated splic-
ing in animals is alternative splicing (an altered 
selection of exons), whereas the usual nature of 

In 1874, Georg Cantor 
published a proof of the 
existence of uncountable 
infinities. He started by 
labelling points in the interval 
[0, 1) with the countable 
infinite natural numbers (1, 2, 
3, …) as follows:

a1 = 0.d11 d12 d13 d14 d15 … (for 
example, a1 = 0.31415926 … 
with d11 = 3, d12=1, etc.)
a2 = 0.d21 d22 d23 d24 d25 …
a3 = 0.d31 d32 d33 d34 d35 … 
…

All ds are digits between 0 
and 9. There is at least one 
number ax = 0.dx1dx2dx3 … in 
the unit interval [0, 1) such 
that dx1 ≠ d11, dx2 ≠ d22, and so 

on, guaranteeing that it differs 
from each number in the list 
by at least one digit, and hence 
it cannot be in the list. This 
proves that the number of 
points in the unit interval is not 
countable, a proof known as 
Cantor diagonalization.

A related result, the 
diagonal lemma, has played 
an important part in the proof 
of several incompleteness 
theorems. In 1931, Kurt Gödel 
proved that any mathematical 
system that includes enough 
of the theory of natural 
numbers contains statements 
that cannot be proved to be 
either true or false, and is 
thus incomplete. The general 
argument for the proof is 

based on Epimenides’ liar’s 
paradox — is ‘This sentence 
is false’ a true or a false 
statement? — but it replaces 
‘false’ with ‘unprovable’. The 
construction of a number 
that represents a concrete, 
undecidable statement 
requires diagonalization 
techniques.

In the mid-1930s, Alan 
Turing used similar methods 
to prove that no general 
algorithm can determine 
whether a given Turing 
machine — a computer 
— halts for a given input. 
It is thus not surprising that 
Wolpert’s proofs also rely 
on diagonalization 
arguments. P.-M.B.

Box 1 | Cantor, Gödel , Turing and the uncountable  
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Messenger RNAs don’t usually correspond exactly to DNA — portions of 
the primary transcript, known as introns, are removed by splicing. A study 
reveals new ways in which splicing can be regulated.
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