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The Effects of Plant Composition and Diversity
on Ecosystem Processes

David U. Hooper* and Peter M. Vitousek

The relative effects of plant richness (the number of plant functional groups) and com-
position (the identity of the plant functional groups) on primary productivity and soil
nitrogen pools were tested experimentally. Differences in plant composition explained
more of the variation in production and nitrogen dynamics than did the number of
functional groups present. Thus, it is possible to identify and differentiate among po-
tential mechanisms underlying patterns of ecosystem response to variation in plant
diversity, with implications for resource management.

Recent experiments have shown increas-
ing net primary productivity (NPP) and
nutrient retention in ecosystems as the
number of plant species increases (1, 2).
Ecosystem response to plant richness could
occur via complementary resource use if
plant species differ in the ways they harvest
nutrients, light, and water (3, 4). Comple-
mentarity could happen in space, for exam-
ple, because of differences in rooting
depths; in time, for example, because of
differences in phenology of plant resource
demand; or in nutrient preference, for ex-
ample, nitrate versus ammonium versus dis-
solved organic N. Greater plant diversity
would then allow access to a greater propor-
tion of available resources, leading to in-

creased total resource uptake by plants,
lower nutrient losses from the ecosystem,
and increased NPP, if the resources in
question are limiting growth. However,
differences in plant composition (the
identity of the species present) may have
large effects on ecosystem processes if the
traits of one or a few species dominate (5).
For example, if one species or group of
species reduces soil nutrients to a lower
level than do other species, then this spe-
cies (or group) may dominate pools of
available soil nutrients in mixtures (6).
Such effects of composition could also
lead to lower soil nutrient pools and great-
er nutrient retention as diversity increases
because of an increasing probability of
including the dominant species at higher
levels of richness. In this case, however,
increased ecosystem nutrient retention re-
sults from the presence of only one species
rather than from niche differentiation and
complementary resource use among many.
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Until now, a direct test to resolve these
mechanisms has not been reported.

We describe an experiment that exam-
ined how richness and composition of plant
functional groups (7) affect nutrient cycling
in a serpentine grassland in California. We
assessed how plant diversity affects produc-
tivity, resource availability to plants, and N
leaching losses. The experiment focused on
both the plant and microbial mechanisms
responsible for such effects. Species from
four functional groups defined by traits that
are potentially relevant to nutrient cycling
were used: early season annual forbs (E),
late season annual forbs (L), perennial
bunchgrasses (P), and N-fixers (N) (8). In
the Mediterranean-type climate of the San
Francisco Bay region, annual plants germi-
nate in the fall after the first significant
winter rains. E’s set seed and senesce by
April or May, the beginning of the summer
dry season. L’s continue to grow and flower
through the summer, senescing the follow-
ing autumn. P’s senesce aboveground in late
May and resprout from roots at the begin-
ning of the following rainy season. N’s are
phenologically similar to E’s, but were in-
cluded for their relevance to nitrogen cy-
cling. In addition to phenology, these
groups differ in other characteristics rele-
vant to nutrient retention and turnover,
including rooting depth, root-to-shoot ra-
tio, competitive ability, size, and foliage
C/N ratio (9, 10). E’s, L’s, and P’s were
planted in a factorial combination, and two

treatments containing N-fixers were also
included: N’s alone, and N’s combined with
all other groups (11). A disturbed serpen-
tine grassland site was used, in which ser-
pentine topsoil was layered over the preex-
isting subsoil to provide a common sub-
strate on which to plant the experimental
treatments.

Aboveground biomass, used here to es-
timate primary productivity, did not corre-
late with increasing functional group rich-
ness (Table 1) (12). However, there were
significant differences among treatments
having the same number of functional
groups (Fig. 1A) (13). In general, composi-
tion (the identity of the functional groups
present) explained much more variance
than did richness (the number of groups
present) (Table 1). Complementarity may
be evident in some subsets of the treat-
ments; for example, the E-containing treat-
ments showed an increase in productivity as
more functional groups were included (E ,
EL, EP # ELP , ELPN; Fig. 1A). However,
mixture yields never approached the sub-
stantially higher biomass of the perennial-
only treatment. Although these groups dif-
fer in both phenology and rooting depth,
competitive interactions in mixture treat-
ments had a strong effect on total plant
biomass. In mixtures, the smaller E’s and L’s
reduced the biomass of P’s substantially be-
low the levels expected on the basis of
planting density and yields in single-group
treatments (Fig. 1B). Our results do not

address year-to-year variability in produc-
tion in response to pests, disturbance, or
climatic variability (4, 14, 15). However,
for NPP in this one year, traits of certain
functional groups, such as competitiveness
of E’s and L’s in mixture and large biomass
of P’s in monoculture, outweighed the ef-
fects of complementarity due to differences
in phenology and rooting depth.

If nutrient use among plants is comple-
mentary, the expectation is that functional
group mixtures will be able to reduce pools
of available N in soil to lower levels than
will single functional group treatments. On
the other hand, if one group is dominant,
this group alone (and all mixtures contain-
ing it) should have the lowest soil N levels.
We measured pool sizes of inorganic N in
the top 10 cm of soil in February during the
wet mid-winter growing season (16). In-
creasing functional group richness was cor-
related with reduced soil inorganic N pools
in the experimental plots (Fig. 1C and Ta-
ble 1). However, E’s alone reduced inorgan-
ic N pools to the lowest level of any single
functional group treatment, and all more
diverse treatments containing E’s had
equally low pool sizes. This pattern is con-
sistent with Tilman’s R* hypothesis (6, 17),
in which the most competitive species re-
duces resource pools to the lowest level.
Because a greater proportion of the treat-
ments contained the dominant E’s as diver-
sity increased, this led to lower average N
pool sizes as well. As with productivity,

Table 1. Statistics for productivity and inorganic N (inN) (13). Productivity data were natural log–transformed before ANOVA to improve normality. Models
used for nonlinear regression are also shown.

ANOVA Regression by richness

R2 Composition effects* Richness effects† R2 Linear R2 Nonlinear

Productivity
0.72 1E , 2E***‡ NS 0.13 All§ — All

1P . 2P** (1 5 2 5 3 5 4) Intercept 5 5.04*** ND¶
E3L (0.053) Slope 5 0.02 (NS)
L3P (0.039) BLK (NS)

0.66 E onlyi 0.57 E only
Intercept 5 4.408 B 5 92.13 1 66.72 * log(FG)
Slope 5 0.216***
BLK (NS)

Inorganic nitrogen pools
0.75 1E , 2E*** B . 2, 3, 4* 0.29 All# 0.20 All

1N $ 2N 1 . 2, 3* Slope 5 1.359*** inN 5 x1 1 x2 * e(x3*FG)

(0.046) 1 . 4 @ Intercept 5 20.296*** x1 5 20.081
E3L (0.014) BLK (NS) x2 5 1.617

x3 5 20.364
0.37 E only#

Slope 5 0.43 (NS) — E only
Intercept 5 0.002 (NS) ND
BLK*

*Composition effects: significant main effects and interactions from ANOVA. †Richness effects: differences among levels of functional group richness [B (bare), 1, 2, 3, or 4
functional groups] without accounting for composition. ‡Significance for a priori ANOVA tests is denoted by the following: NS, not significant; @, Bonferroni family-wide P , 0.1;
*, P , 0.05; **, P , 0.01; and ***, P , 0.001. Because the Bonferroni correction is conservative, when the uncorrected P value is lower than 0.10 but greater than the Bonferroni
corrected P for family-wide confidence, the significance value is listed. § Regression including all treatments. Model is ln(B) 5 a 1 b*FG 1 BLK , where B is biomass in g/m2,
a and b are the intercept and slope, respectively, FG is number of functional groups, and BLK is a categorical variable for block. iRegression including only E-containing
treatments; see Fig. 1. Model is the same as for All. ¶ND, analysis was not done because no trend was evident. #Regression model is inN 5 a 1 b*FG 1 BLK.
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composition explained substantially more
of the variance in the data than did func-
tional group richness alone (Table 1).

To obtain an integrative measure of how
plant composition and diversity affect N
losses from the ecosystem, we added tracer
amounts of the stable isotope 15N and fol-
lowed its fate over the course of a growing
season (18). Unlike the single time-point

measurement of inorganic N, increasing
functional group richness did not significant-
ly affect 15N retention; total losses were sim-
ilar for all treatments except for significantly
lower retention in bare plots (Fig. 2 and
Table 2). In all treatments, most 15N was
recovered in soil. Other experiments looking
at ecosystem N retention have yielded sim-
ilar results, implying that, in the short term,
microbial immobilization is a more impor-
tant pathway for N retention than plant
uptake (19). However, the presence of mi-
crobes alone is not sufficient; microbial im-
mobilization relies on C inputs from plants,
resulting in low soil retention in bare plots in
this and other experiments (Fig. 2) (20).

Composition, but not richness, of plant
functional groups affected the distribution
of 15N between plants and soil (Fig. 2 and
Table 2). If plant 15N uptake were comple-
mentary between all three groups, we would
expect to see a general increase in plant 15N

retention as diversity increased. Instead,
where differences among treatments oc-
curred, they resulted from interactions
among certain combinations of groups, as
with productivity (Table 2). Complemen-
tarity among these functional groups appar-
ently had a smaller effect on ecosystem N
retention than did other attributes, such as
litter quality and root turnover, that affect-
ed microbial immobilization.

In summary, we observed two patterns
for the response of ecosystem processes to
changes in plant functional group richness
and composition. For productivity and 15N
retention, there was no response to chang-
es in functional group richness, although
within a given level of richness, treat-
ments of different composition differed
from each other. For inorganic N, we ob-
served a decrease in soil pool sizes as plant
functional group richness increased. How-
ever, the mechanism by which this oc-
curred was not complementary nutrient
use resulting from functional group rich-
ness per se; rather, it resulted from the
dominant effects of one functional group,
the early season annuals, in all mixtures of
which it was a component.

These results point to two primary con-
clusions. First, differences in functional
group composition can have a larger effect
on ecosystem processes than does function-
al group richness alone. The effects of dif-
ferences in composition are widely recog-
nized in intercropping and agroforestry,
where much time and expense are invested
in finding species or genetic varieties that
combine in more diverse agroecosystems to
improve total yield (4, 14, 21). This sug-
gests that the functional properties of par-
ticular species and combinations of species,
more than richness per se, control yields
and nutrient use (2, 22). Second, because
differences in species composition can be
correlated with differences in species rich-
ness, we need to look at all species or func-

Fig. 1. Response of (A) aboveground biomass to
functional group richness (mean 61 SE, n56), (B)
aboveground biomass in 1993 to functional group
composition, and (C) soil inorganic N (microgram of
N per gram of soil) in February 1993 to functional
group richness. Treatments are B 5 bare plots,
E 5 early season annuals, L 5 late season annuals,
P 5 perennial bunchgrasses, N 5 N-fixers, EL 5
earlies plus lates, EP 5 earlies plus perennials,
LP 5 lates plus perennials, ELP 5 earlies plus lates
plus perennials, and ELPN 5 earlies plus lates plus
perennials plus N-fixers. In (A) and (C), points are
offset from whole numbers for clarity only. The solid
line is the regression through all data points, and
the dashed line is the regression through only those
treatments that contain early season annuals. See
Table 1 for regression parameters. In (B), stacked
bars show the average functional group composi-
tion of each treatment (n 5 6, 61 SE of the total
plot biomass). In (B) and (C), means within one level
of richness with the same nonlabel letter (a, b, c, x,
and y) are not significantly different at Bonferroni-
corrected P , 0.10.

Fig. 2. Recovery of 15N in plants (roots, shoots, and litter) and soil (soil organic matter, microbial
biomass, and inorganic nitrogen pools). “Total” is the sum of plant and soil recovery. Treatments are as
in Fig. 1, except no treatments with N-fixers were used with this experiment. Bars are means 61 SE, n
5 3. Differences of means within levels of richness are designated as in Fig. 1. See Table 2 for additional
statistics.

Table 2. ANOVA results for 15N retention. Re-
gressions were not performed because no trends
were evident. Soil 15N data were natural log–
transformed before ANOVA to improve normality.
NS, @, *, **, and *** as in Table 1.

R2 Composition effects Richness
effects

Plant 15N
0.50 L3P (0.030) NS

(E 1 ELP # EL 1 EP)
Soil 15N

0.69 1E $ –E (0.012) NS
1L . 2L@
1P # 2P (0.019)†

Total 15N recovery
0.87 1E $ –E** NS

1L . 2L**
E3L@
E3P*
L3P*
(Due to low recovery in B)

†Post-hoc test including only vegetated treatments:
3(P1EP1LP1ELP) 5 4(E1L1EL).
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tional groups grown alone as well as in more
diverse combinations to understand mech-
anisms of diversity effects on ecosystem pro-
cesses. As diversity changes, complementa-
rity or facilitation among species are possi-
ble, but so are many other effects that may
counteract these (23, 24).

The implications of the effects of rich-
ness and composition on ecosystem process-
es cut both ways for conservation and land
management. If the only goal is the short-
term maximization of production, in some
cases less diverse cropping systems may per-
form as well as more diverse systems, as seen
in agriculture and forestry. However, higher
production in monocultures often comes
only with the added expense of energy,
fertilizer, and pesticides over the longer
term, along with the external environmen-
tal costs of such inputs (25). On the other
hand, knowledge of the functional charac-
teristics of component species can aid in
sustainable management of low-diversity
intercropping systems. The results of our
experiment also indicate that in aiming to
protect natural ecosystems, we cannot just
manage for “species diversity” alone—as
measured by richness or the Shannon-
Wiener index, which ignore species compo-
sition. The functional characteristics of the
component species in any ecosystem are
likely to be at least as important as the
number of species for maintaining critical
ecosystem processes and services.
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