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New Hampshire Streams?
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Goodale and others (2003) pose an intriguing

question: How can we explain the unexpected de-

cline in nitrate concentration in New Hampshire’s

streams? Theory of forest nitrogen (N) biogeo-

chemistry suggests that retention of atmospheri-

cally deposited N can occur through vegetation

uptake, accumulation in soil organic matter, abiotic

immobilizaton, and accumulation in coarse woody

debris including roots and stumps. The latter

mechanism occurs through microbial processes

that narrow the C:N ratios of this pool and may be

underappreciated, but is well documented (Har-

mon and others 1986; Fahey and others 1988; Fa-

hey and Arthur 1994). The relative strength of

these sinks depends upon site conditions and, in

particular, on historical land use (Dise and others

1998; Gundersen and others 1998a; Goodale and

others 2000). In general, the greater the previous

disturbance and resulting soil N depletion, the

greater the soil N sequestration potential. Forest N

sinks are limited, thus, N sequestration will not

continue indefinitely (Stoddard 1994; Aber and

others 2003), but the capacity of this N sink and its

dynamics over time are uncertain. As an example

of the uncertainty in the temporal dynamics of this

N sink, consider the lag between N additions and

measurable effects on process. There can be a sig-

nificant delay between the initiation of inorganic N

additions and the induction of detectable increases

in net nitrification (Magill and others 2000).

The unexpected decline in nitrate concentrations

in New Hampshire streams cannot be explained by

trends in forest maturation or atmospheric deposi-

tion of N (Goodale and others 2003). Likewise,

mechanisms for the decline, based on a re-equili-

bration following recovery from insect defoliation

and severe drought in the 1960s (Aber and others

2002), and soil frost dynamics, were provisionally

ruled out based on their failure to explain the

regional nature of the stream water nitrate decline

(Goodale and others 2003). Potential explanation

based on enhanced N uptake through growth in-

creases caused by CO2 fertilization (Idso 1999) was

rejected as having too small an effect on forest

growth and the lack of a growth response at the

Hubbard Brook Experimental Forest (HBEF). Forest

growth data from HBEF (Goodale and others 2003)

and Forest Inventory Analysis (FIA) survey data for

New Hampshire (FIA data files online) do not

support substantial growth increases in recent

decades. Goodale and others (2003) concluded that

interannual climate variation remained a plausible

mechanism; however, they noted that the specific

climate factors were uncertain. This region has

experienced warmer (Keim and others 2003),

wetter (Groisman and others 2001), and longer

growing seasons (Cooter and LeDuc 1995; Hodg-

kins and others 2003) in recent decades, all of

which would argue for increased, rather than de-

creased, N uptake.

There may be another more likely explanation

that the authors have not considered. Immobiliza-

tion of inorganic N (accumulation in organically

bound soil pools) in combination with a regionwide
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recovery from past disturbances may explain the

decrease in stream water nitrate in recent decades.

Net immobilization can occur through several

mechanisms: (1) decomposition and microbial

transformations of organically bound N in plant

residues, (2) microbial uptake of inorganic N and

assimilation into microbial biomass that is subse-

quently transformed into soil organic matter, (3)

abiotic N immobilization, (4) microbial transforma-

tion of extant soil organic matter that leads to a de-

crease in C:N ratio, and (5) a suppression of N

mineralization. A recent synthesis provides some

insight into whether the latter two mechanisms are

likely contributing factors. Aber and others (2003)

report that soil data from a broad spectrum of

northeastern U.S. forests ��show an increase in

nitrification with decreasing soil C:N ratio.�� They

found weaker relations between N deposition and

soil C:N ratio or nitrification. Studies along N-depo-

sition gradients indicate that soil C:N ratios decrease

under conditions of chronically elevated N deposi-

tion (McNulty and others 1991; Gundersen and

others 1998b). These studies are consistent with a

model of elevated N deposition resulting in increases

in nitrification and decreases in C:N ratio, but they

do not support the suppression of N mineralization

as a likely mechanism for increasing N sequestration.

Forests across most of New Hampshire, like the

HBEF, represent ecosystems that are recovering

from major historical disturbances such as logging,

grazing, and sometimes cultivation (Cogbill and

other 2002; Sundquist and Stevens 1999). Ag-

grading forests usually have a large capacity to

accumulate organic matter as they gradually ap-

proach predisturbance equilibrium (Johnson 1992;

Huntington 1995). These soil pools include the

mineral soil, organic-rich forest floor, and coarse

woody debris. Disturbance associated with timber

harvesting redistributes high C:N ratio forest floor

and coarse woody debris under mineral soil (Ryan

and others 1992) that can prime the soil for N

sequestration during forest regrowth through

microbial transformations. The amount of annual

soil N accretion necessary to offset the observed

average 71% decrease in stream-water nitrate loss

(Goodale and others 2003) (nominally, from �1.2

to 0.3 g N m)2 y)1 based on nitrate losses at HBEF

during the late 1990s) is only about 0.1% of the

estimated soil N content at Hubbard Brook (760 g N

m)2) (Huntington and others 1990). It seems

plausible that forest soils could sustain the accu-

mulation of N at these relatively low levels, which

would be very hard to detect upon remeasurement.

The regional soil N sink strength could be greater

in recent decades because environmental condi-

tions are now more favorable for soil N sequestra-

tion, if not forest growth. Elevated atmospheric

CO2 concentrations intensify carbon cycling that

supplies more labile carbon to soil microbes (Hun-

gate and others 1997), increasing capacity for immo-

bilization of inorganic N. Chronically elevated N

deposition can intensify N cycling (Galloway and

others 2003) that, in turn, can increase net N

sequestration rate, provided the supply of labile

carbon is not limited. Stimulation of forest growth

by CO2 fertilization, N deposition, and more

favorable climate may have exerted more influence

on the production of organic carbon belowground

(fine root turnover and root exudate) and leaf litter

than on stem biomass. Such a differential effect of

elevated CO2 has been demonstrated in Free Air

Carbon dioxide Enrichment (FACE) studies (Norby

and others 2002). These rapidly cycling pools can

contribute to the accumulation of soil organic N

(Hungate and others 1997). This proportionately

greater stimulation of belowground carbon pro-

duction could account for an increase in soil or-

ganic-N storage without concomitant increase in

forest growth. However, it remains uncertain why

forest stemwood biomass would not have re-

sponded to more favorable climate, CO2 enrich-

ment, and elevated N deposition in recent decades.

Other factors such as growth inhibition due to

ozone (Gregg and others 2003) and other stressors

or nutrient depletion (Federer and others 1989)

may have suppressed stem growth. Abiotic N

immobilization is another mechanism of N reten-

tion in forest soils (Davidson and others 2003) but

its quantitative importance is not yet established.

The rate of abiotic N immobilization could be

increasing because it has been shown that the ratio

of abiotic to total N immobilization is positively

related to N concentration and ecosystem N satu-

ration (Johnson and others 2000).
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