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Abstract We developed and evaluated empirical mod-
els to predict biological condition of wadeable streams
in a large portion of the eastern USA, with the ultimate
goal of prediction for unsampled basins. Previous work
had classified (i.e., altered vs. unaltered) the biological
condition of 920 streams based on a biological
assessment of macroinvertebrate assemblages. Predictor
variables were limited to widely available geospatial
data, which included land cover, topography, climate,
soils, societal infrastructure, and potential hydrologic
modification. We compared the accuracy of predictions
of biological condition class based on models with
continuous and binary responses. We also evaluated the
relative importance of specific groups and individual
predictor variables, as well as the relationships between
the most important predictors and biological condition.
Prediction accuracy and the relative importance of
predictor variables were different for two subregions
for which models were created. Predictive accuracy in
the highlands region improved by including predictors
that represented both natural and human activities.
Riparian land cover and road-stream intersections were
the most important predictors. In contrast, predictive
accuracy in the lowlands region was best for models
limited to predictors representing natural factors, in-

cluding basin topography and soil properties. Partial
dependence plots revealed complex and nonlinear
relationships between specific predictors and the prob-
ability of biological alteration. We demonstrate a
potential application of the model by predicting biolog-
ical condition in 552 unsampled basins across an
ecoregion in southeastern Wisconsin (USA). Estimates
of the likelihood of biological condition of unsampled
streams could be a valuable tool for screening large
numbers of basins to focus targeted monitoring of
potentially unaltered or altered stream segments.
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Introduction

Information about the ecological quality of rivers and
streams is critical to understanding the state of our
environment (Heinz Center 2002). Statistical sam-
pling methods provide unbiased estimates of the
proportion of stream miles within a population (e.g.,
wadeable streams) in different states of ecological
condition (Paulsen et al. 1998). These estimates
address questions about the extent and severity of
ecological degradation, which are often the goal of
regional (e.g., USEPA 2000) and national (e.g.,
USEPA 2006a) assessments. With the knowledge that
a portion of streams are ecologically impaired,
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resource managers often need to prioritize which
unsampled waters require targeted monitoring and
assessment, and this requires tools that predict
impairment using readily measured (e.g., map-based)
predictors. Empirical models that use geospatial
variables to spatially predict (i.e., predict beyond
sampled systems) the biological quality (sensu Wright
et al. 2000) of stream ecosystems may be such a tool.

The literature linking landscape attributes to stream
ecosystems is voluminous, but few have attempted to
predict biological quality. The importance of landscape
attributes to stream ecosystems is well known (review
by Allan 2004), due in large part to empirical models
(e.g., multiple linear regression) of associations be-
tween landscape characteristics and biological commu-
nities (e.g., Strayer et al. 2003; King et al. 2005). Few
studies, however, have extended empirical models to
prediction (Nilsson et al. 2003), particularly for
independent datasets. Although select biological indi-
cators have been projected using geospatial variables
(Potter et al. 2004; Van Sickle et al. 2004), there have
been few attempts to predict overall biological condi-
tion (but see Vólstad et al. 2003), which normalizes the
biological response to a deviation from an expected
condition (Wright et al. 2000). Such biological
endpoints can be widely applied and interpreted
(Davies and Jackson 2006; Hawkins 2006) and are
therefore desirable for modeling across large spatial
scales.

Several statistical challenges complicate empirical
modeling of biological condition. Geographic informa-
tion systems can produce scores of geospatial variables,
many of which exhibit highly skewed distributions and
complex covariance structures (King et al. 2005). In
addition, the desire to model interactions and nonlinear
effects, which are theoretically important (Strayer et al.
2003), leads to a dizzying number of potential
predictor variables. Analyses are therefore encumbered
by statistical pitfalls in variable selection (Hastie et al.
2001; Venables and Ripley 2002) and substantial
uncertainty associated with model selection (Burnham
and Anderson 2002; Van Sickle et al. 2004). Because
these statistical challenges are difficult to overcome
with traditional linear modeling, alternative approaches
may be more productive.

Breiman (2001) introduced “random forests” (here-
after RF) as an improvement on classification and
regression trees. Tree-based methods have proved a
useful aid in decision making and data analysis

(Venables and Ripley 2002) because they efficiently
handle messy (i.e., skewed distributions, nonlinear-
ities) data and high-order interactions (De’ath and
Fabricius 2000; Urban 2002; Parmenter et al. 2003).
By combining the robustness of tree-based methods
and the strengths of model averaging (Breiman 2001;
Hastie et al. 2001; Burnham and Anderson 2002), RF
appear to be more accurate than linear models,
classification trees, general additive models, and
artificial neural networks (Svetnik et al. 2003; Garzón
et al. 2006; Lawler et al. 2006; Cutler et al. 2007). RF
may therefore be capable of predicting stream
biological condition using basin-scale geospatial
variables that are easily produced. The objective of
this paper was to develop and evaluate an empirical
model that uses geospatial variables to predict stream
biological condition across a large geographic area.
We also evaluated the relative importance of predic-
tors and the specific relationships between the most
important predictors and biological condition. Finally,
we illustrate how such models might be used to
screen large numbers of basins for possible biological
alteration.

Materials and methods

Study area and data collection

We used biological data collected in 24 major river
basins by the US Geological Survey, National Water-
Quality Assessment (NAWQA) Program from 1993–
2004. This analysis was limited to data from streams
in 920 small- to moderate-sized (<1,000 km2) basins
east of the 100th meridian (Fig. 1). Within most major
river basins, wadeable streams were targeted for
sampling based on prominent land uses (urban,
agriculture, undeveloped) within their individual
watersheds (Gilliom et al. 1995). Additional streams
in six of the major river basins were targeted along
gradients of urban land use (Tate et al. 2005). Benthic
macroinvertebrates were collected using consistent
methods (Cuffney et al. 1993; Moulton et al. 2002).
When present, riffles were targeted for macroinverte-
brate sampling. Five discrete collections (each
0.25 m2) were made using a 425–500 μm mesh net
and combined into a composite sample. In low-
gradient streams with fine-grained substrates, woody
snags along the margins or within the channel were
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sampled by making collections of least two snags
from five separate locations. All invertebrate samples
were processed at the USGS National Water Quality
Laboratory in Denver, Colorado, using the methods of
Moulton et al. (2000). Taxa were identified to the
lowest practical taxonomic unit and quality-assurance
procedures were maintained (Moulton et al. 2000).

Assessing biological condition

The models described in this study were developed to
predict an indicator of biological condition (sensu
Wright et al. 2000), which was itself derived from an
independent modeling effort. We previously assessed
biological condition using an indicator of taxonomic
completeness (sensu Hawkins 2006) of macroinverte-
brate assemblages primarily at the genus-level of
taxonomic resolution (Carlisle and Meador 2007).
Taxonomic completeness is defined as the ratio of
observed (O) and expected (E) assemblage composi-
tion, where O/E <1 indicates that expected taxa were
not observed in a sample. Although O is measured
directly, E is estimated using empirical models that
relate taxonomic composition to natural environmental
gradients (Clark et al. 2003). Details of model
philosophy (Wright et al. 2000; Hawkins 2006) and
construction (Wright et al. 2000; Hawkins et al. 2000;
Hawkins and Carlisle 2001; Clark et al. 2003) have
been exhaustively described elsewhere. We developed
(Carlisle and Meador 2007) a RIVPACS-type (sensu
Hawkins et al. 2000) predictive model to estimate E
for NAWQA sites within 24 major river basins in the
eastern US. Eight predictors (latitude, longitude,

drainage area, mean annual temperature, mean annual
precipitation, soil clay content, soil silt content, and
sampling day of year) produced estimates of E with
lowest bias (mean O/E=0.97) and highest precision
(SD of O/E=0.11) when applied to an independent
set of least-disturbed sites (Carlisle and Meador
2007). A RIVPACS-type model with these predictors
was therefore applied to all non-reference sites for the
estimation of E, from which O/E was derived. All of
the reference sites used to develop the predictive
model and most (>90%) of the test sites were also
used in this study.

Although O/E is a continuous measure, our objective
was to predict whether or not biological alteration was
evident because it approximates the classifications used
by many monitoring entities (i.e., supporting vs. not-
supporting designated beneficial uses). We defined a
threshold of biological alteration as O/E <0.80, which
we believed balances statistical and biological signifi-
cance.We selected this threshold because it was the 10th
percentile of O/E values among reference sites (Carlisle
and Meador 2007), and therefore approximated the
degree of change that was most likely to be statistically
detectable while minimizing the misclassification rate
of reference sites (i.e., 10%). We also judged that a
20% loss of expected taxa was biologically sufficient
to classify a site as altered. Others have also used this
or similar thresholds for classifying biological condi-
tion (Clark et al. 1996; Ostermiller and Hawkins 2004;
Van Sickle et al. 2005).

Although biological condition of all sites was
assessed with a single RIVPACS-type model, for this
study we stratified our modeling effort into two
geographic sub-regions of the eastern USA. We
reasoned that models for increasingly homogenous
(with respect to major landforms and climate) regions
would be more successful at predicting biological
condition using basin-scale indicators of anthropo-
genic stressors. We stratified the eastern USA into one
region that included the Appalachian and northeastern
highlands (n=281 unaltered and 74 altered sites), and
a second region that included the northern/central
plains and southeastern lowlands (n=374 unaltered
and 191 altered sites). This regionalization is coarse,
but represents a balance between increasing spatial
resolution (i.e., homogenization of landscape features)
and retaining sufficient numbers of observations for
modeling purposes, and has been used in other large-
scale assessments (USEPA 2006a).

Fig. 1 Locations of 920 sites used for empirical modeling of
biological condition

Environ Monit Assess (2009) 151:143–160 145



Geospatial data and predictor selection

One hundred fifty-one variables derived from Geo-
graphic Information System (GIS) processing were
screened as potential predictors of biological condi-
tion (Appendix). Geospatial predictors represented
broad factors influenced by human activities such as
land cover, infrastructure, pesticide and nutrient
application, water impoundment, flow diversion, and
point source pollution. We also included predictors
representing largely natural factors such as climate,
topography, hydrology, and soils.

Basin boundaries were acquired as part of the
USGS NAWQA Program (USGS 2006a). Land-cover
data were derived from a NAWQA-enhanced version
of the National Land Cover Dataset 1992 (USGS
2006b), a 21 class, 30 m resolution raster dataset
derived from Landsat imagery of the period 1990–
1992. Land-cover data were calculated as both basin
percentages and riparian zone percentages. Riparian
zones were defined as the buffer area 100 m from the
stream centerline for all streams in the basin, based on
National Hydrography Data (NHD) 100k streams
(USGS 2006c). Population density was derived from
Census 1990 data (GeoLytics 2001). Road density
and road-stream intersections were based on Census
2000 roads (GeoLytics 2001) and NHD 100k streams.
Pesticide and nutrient application were derived from
coverages developed by the NAWQA Program
(Ruddy et al. 2006; USGS 2007). Water impound-
ment data were obtained from the National Inventory
of Dams (USACE 2006). Flow diversion data were
obtained from NHDPlus (Horizon Data Systems
Corp. 2006). Data for point-source discharges were
obtained from USEPA National Pollutant Discharge
Elimination System (USEPA 2006b). Mean air tem-
perature and precipitation statistics were derived from
1km resolution Daymet model data (Daymet 2006),
which represented 18 year (1980–1997) temperature
and precipitation averages obtained from terrain-
adjusted daily climatological observations. Topo-
graphic variables were derived from 100 m data
based on the USGS National Elevation Dataset
(USGS 2006d). Hydrologic variables were based on
1 km resolution grids developed from USGS sources
(Wolock and McCabe 1995; Wolock et al. 1997).
Soils data were based on 100 m weighted averages of
US Department of Agriculture State Soil Geographic
Data (USDA 2006).

We retained 66 of the original variables for use as
predictors. Variables that were highly redundant (i.e.,
Spearman rank |ρ| >0.80) were removed from
consideration, including all basin-scale land-cover
variables, which were highly correlated with land
cover in the riparian buffer. Because many (28) of the
available predictors represent natural environmental
gradients and were also used in the RIVPACS-type
predictive models from which biological condition
was assessed (Carlisle and Meador 2007), we evalu-
ated whether the inclusion of these variables im-
proved model predictions (see “Statistical modeling”).

Statistical modeling

Random forests (RF) extend classification and regres-
sion trees (Prasad et al. 2007; Cutler et al. 2007) by
using an ensemble of trees to make predictions
(Breiman 2001). RF builds many classification/regres-
sion trees, each with a bootstrapped sub-sample of the
original observations. In addition, nodes are created by
selecting the best predictor variable from a randomly
selected subset of all predictors. The largest tree
possible is grown but not pruned. The observations
not selected in the bootstrap sample are then passed
through each tree. This process is repeated, creating a
“forest” of individual trees. The final classification (or
value in regression) for each observation is made by
selecting the class to which it was most frequently
classified (average predictions for regression) across all
trees where that observation was excluded from the
bootstrap sample. Additional details of RF are given
elsewhere (Breiman 2001; Prasad et al. 2007; Cutler et
al. 2007). We constructed RF models with 2000 trees
using an implementation written for the R statistical
system (R Development Core Team 2006) by Liaw
and Wiener (2002).

We compared the accuracy of modeling biological
condition as a categorical and continuous variable. We
classified each observation using the threshold de-
scribed above (O/E=0.80), then used RF in classifica-
tion mode to predict the class of each observation. We
also used RF in regression mode to predict O/E as a
continuous variable, and then subsequently classified
each observation as altered (predicted O/E<0.80) or
unaltered (predicted O/E>0.80). Because the final
prediction for each observation is computed over the
trees where it was excluded from RF construction,
these estimates are equivalent to that of a cross-
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validated procedure (Cutler et al. 2007). Prediction
accuracy and error rates were evaluated by computing
the overall percentage of correctly classified observa-
tions (PCC), sensitivity (percentage of altered sites
correctly classified), specificity (percentage of unal-
tered site correctly classified), kappa (measure of
agreement between observed and predicted classes
corrected for agreement due to chance). We also used
the area under the receiver-operating characteristic
curve (AUC) to measure the performance of classifi-
cation models because it provides a single measure of
overall accuracy that is independent of thresholds used
for binary classification (Fielding and Bell 1997). AUC
values range from 0.5, which indicates the classifica-
tion performed no better than chance, to a maximum of
1.0, which indicates the classification was perfectly
accurate. We evaluated the performance of each RF
model when constructed with subsets and the entire set
of 66 predictor variables. For both the RF regression
and classification models, we compared prediction
accuracy for models that included: 28 natural cova-
riates as predictors, 38 predictors that represent human
activities, and all 66 predictor variables.

Our secondary objective was to evaluate the relative
importance of predictor variables for each model.
Variable importance was measured with observations
not selected in the bootstrap samples used to construct
each tree (so-called “out of bag” or OOB). First, the
OOB observations are passed through each tree and
classified. Then, values of each predictor variable are
randomly permuted in turn and the corresponding
decrease in prediction accuracy (or mean squared error
for regression) of the OOB observations is recorded for
each tree. The decrease in accuracy for each predictor
is averaged and standardized (divided by the standard
error) across all trees (Liaw and Wiener 2002; Cutler et
al. 2007). Intuitively, the relative decrease in prediction
accuracy when a predictor variable is permuted is
related to its importance in the classification.

We examined the relationships between individual
predictors and biological condition using partial depen-
dence plots, which is a tool to visualize the effects of a
single variable on the outcomes of classification and
regression models (Hastie et al. 2001; Cutler et al.
2007). For a given value of the predictor under
examination, the expected prediction is estimated by
averaging the predictions over all the combinations of
observed values of the other predictors in the data set.
In essence, partial dependence functions represent the

effects of the examined predictor variable after
accounting for the average effects of all other
predictors (Hastie et al. 2001). We examined partial
dependence for a subset of the most important
predictors for each model. Partial dependence was
computed for each of 500 equally spaced points over
the range of each predictor selected for examination
(Liaw and Wiener 2002).

Finally, we illustrate how models that predict
biological condition may be applied to unsampled
locations as a tool to screen broad regions for the
existence of biologically altered streams. Predictor
variables were generated for 552 unsampled basins in
the Southeastern Wisconsin Till Plains ecoregion that
had similar size range (10–150 km2) as the 56
sampled basins also located in that ecoregion
(Fig. 1). Basin boundaries for unsampled sites were
derived from 30 m National Elevation Data (USGS
2006d). We first applied the procedures described by
Moss et al. (1987) and Clark et al. (2003) to
determine if the predictor variable values of each
unsampled basin belonged to the same statistical
population as the reference sites used to develop the
RIVPACS-type model. The Mahalanobis squared
distances between the locations of test-site values in
predictor space and the centroids of each classifica-
tion group are distributed as a χ2 function. Any
unsampled basin was regarded as outside the range of
the model if the smaller of these values exceeded the
critical χ2 value for α=0.01 and N degrees of
freedom, where N equals the number of discriminant
functions. We applied the RF classification model to
unsampled basins and aggregated the votes (i.e.,
proportion of OOB instances where each observation
was classified as altered). We then mapped the
unsampled basins and illustrated the proportion of
votes for which each was classified as having altered
biological condition.

Results and discussion

The type (i.e., continuous vs. categorical) of biological
response variable did not appear to substantially
influence prediction accuracy. By most measures,
binary predictions from RF classification and a poste-
riori classifications from RF regression were similarly
accurate (Tables 1, 2). Both approaches produced
highly accurate (mean sensitivity: classification=91%,
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regression=90%) predictions of unaltered sites, less
accurate (mean specificity: classification=51%, regres-
sion=52%) predictions of altered sites, and shared
similar performance relative to random chance (mean
kappa: classification=0.441, regression=0.460). Given
this similarity, all further results and discussion will be
limited to classification models.

Prediction accuracy was modestly influenced by
the subset of predictors included in models, but this
effect varied by region. In the highlands (Table 1),
models that included only human-activity predictors
improved model accuracy over that obtained from
models limited to natural covariates as predictors. The
model with both types of predictors performed best
overall, but only by a modest amount (i.e., kappa
increased from 0.405 to 0.542). In contrast, the
addition of human-activity predictors to a model that
included natural covariates did not improve predic-
tions of biological condition in the lowlands region
(Table 2). Moreover, the model limited to human-
activity predictors performed worse than the model
with only natural predictors.

The interactive effect of natural covariates and
human-activity variables on predictions of biological
condition (i.e., O/E) in the highlands region could
arise for at least two reasons. One possibility is that
some variation in E due to natural factors remained
unaccounted for by the model used to assess
biological condition (Carlisle and Meador 2007). This
would result in deviations of O from E that vary

systematically by some natural factor (e.g., basin
size). In theory, we were able to at least partially
“remove” the effect of natural covariates because
climate, soil properties, basin size, topography, and
geographic area were used in the RIVPACS-type
model (Carlisle and Meador 2007) to estimate E.
However, RF may more successfully model variabil-
ity than linear methods under some conditions (Cutler
et al. 2007), and linear discriminant analysis underlies
RIVPACS-type models (Hawkins et al. 2000). We
therefore evaluated in a post hoc fashion whether RF
could explain residual variation in O/E that had not
been accounted for by the RIVPACS-type model. We
constructed an RF-regression model that predicted
O/E values at reference sites (n=273) using the 28
natural covariates included in this study. We limited
the analysis to reference sites because, in theory, the
only variation in E among reference sites (excluding
model and sampling error) should be due to natural
variability. Observed O/E values from this model
explained <10% of the variation in predicted O/E
values, which strongly suggests that there was no
substantive residual variation in E due to natural
factors that was unexplained by the original RIV-
PACS-type model. Another explanation for the
importance of natural covariates in predictive accura-
cy of highland streams is that environmental settings
influence the response (i.e., O/E) of stream inverte-
brate communities to human activities. Many studies
have shown that the vulnerability or ecological

Table 1 Accuracy measures for predictions of biological
condition for eastern highlands region

Accuracy
measure

Model

Classification Regression

Natural Human Full Natural Human Full

PCC 83 86 87 85 85 86
Specificity 41 55 51 42 55 51
Sensitivity 94 95 96 96 93 96
Kappa 0.405 0.451 0.542 0.452 0.510 0.535

PCC is the percentage of observations correctly classified.
Specificity is the percentage of altered streams correctly
classified. Sensitivity is percentage of unaltered streams
correctly classified. Kappa is a measure of agreement between
the predicted and observed corrected for the agreement due to
chance alone

Table 2 Accuracy measures for predictions of biological
condition for eastern lowlands region

Accuracy
measure

Model

Classification Regression

Natural Human Full Natural Human Full

PCC 77 73 76 77 73 76
Specificity 58 43 57 59 47 58
Sensitivity 87 88 87 86 87 85
Kappa 0.460 0.337 0.451 0.461 0.359 0.442

PCC is the percentage of observations correctly classified.
Specificity is the percentage of altered streams correctly
classified. Sensitivity is percentage of unaltered streams
correctly classified. Kappa is a measure of agreement between
the predicted and observed corrected for the agreement due to
chance alone
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response of streams to human activities is influenced
by a variety of natural factors (e.g., channel gradient,
stream size) (Allan 2004; Yates and Bailey 2006). We
think this is the mostly likely explanation for our own
observations.

Models were slightly less accurate in the lowlands
than in the highlands, and also did not improve with
the addition of stressor predictor variables (Tables 1
and 2). One possible explanation is due to the
pervasiveness of human activity in the lowlands

region. Relative to the highlands region, reference
sites used to assess biological condition in the
lowlands were from basins experiencing high levels
of human activity. Reference sites in the lowlands
were considered to be the least disturbed sites within
the region, but were often selected based on expert
knowledge that local-scale conditions (e.g., habitat)
was sufficient to support relatively intact biological
communities (Carlisle and Meador 2007). As a
consequence, it is likely that our basin-scale stressor
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Fig. 2 Top ranked variables
from random forests classi-
fication for predicting bio-
logical condition in
highlands of the eastern
USA. Mean decrease in ac-
curacy for a variable is the
normalized difference of the
classification accuracy for
the observations excluded
from model calibration, and
the classification accuracy
for the same observations
when values of the predictor
are randomly permuted.
Higher values of the mean
decrease in accuracy indi-
cate a predictor is more
important to the
classification
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predictors did not vary substantively between lowland
basins with altered and unaltered biological commu-
nities. Instead, natural factors that probably covary
with unmeasured stressors were sufficient to discrim-
inate between altered and unaltered sites.

The best predictors of biological condition differed
between the lowlands and highlands (Fig. 2). In the
highlands, predictor variables with the greatest effect

were, in decreasing order of importance, riparian
forest cover, road-stream intersections, and riparian
urban land cover, followed by basin elevation and soil
properties. In contrast, soil properties and basin
elevation were the most important predictors in the
lowlands, followed by riparian urban land cover and
several additional natural covariates related to soils
and hydrologic properties (Fig. 3). Our results for the
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Fig. 3 Top ranked variables
from random forests classi-
fication for predicting bio-
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lowlands of the eastern
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normalized difference of the
classification accuracy for
the observations excluded
from model calibration, and
the classification accuracy
for the same observations
when values of the predictor
are randomly permuted.
Higher values of the mean
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important to the
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highlands support many studies that showed riparian
forest cover is an important predictor of biological
communities and influences stream ecosystems in
natural (Wallace et al. 1997), agricultural (Allan 2004;
Moore and Palmer 2005), and urbanized basins (Paul
and Meyer 2001; Allan 2004; Moore and Palmer
2005; Walsh et al. 2005). In contrast, our results for
the lowlands suggest that the stressor predictors were

not useful for discriminating between biologically
altered and unaltered sites (Table 2), for reasons
described above (i.e., poor quality reference sites) or
because the factors responsible for biological alter-
ation covaried with basin soil properties. Neverthe-
less, urbanized riparian land cover appeared to be
more important than any indicator of agricultural use
intensity (e.g., riparian land cover in row crops) in the
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lowlands despite the pervasiveness of agricultural
activity in this region. This observation can be
attributed, in part, to the overwhelming influence of
urbanization on stream biota in landscapes that have
previously been disturbed by significant agricultural
activity (Moore and Palmer 2005).

Partial dependence plots revealed the presence of
potential thresholds in relationships between biolog-
ical alteration and indicators of disturbance (Figs. 4
and 5). After averaging the effects of all other
predictor variables, the probability that a stream was
biologically altered increased dramatically as urban
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Fig. 5 Partial dependence
plots for selected predictors
for random forests predic-
tions of the presence of
biological alteration in low-
lands streams of the eastern
USA. Partial dependence is
the dependence of the prob-
ability that a stream was
classified as altered based
on a single predictor vari-
able after averaging out the
effects of all other predic-
tors in the model
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land cover in the riparian zone reached 10%, then
changed little thereafter. There was also an apparent
threshold of road density in the highlands region,
where abrupt increases in the probability of biological
alteration occurred between one to two crossings per
kilometers of stream length. Thresholds of impervious
or urban land cover related to biological responses
have been widely reported and debated (Paul and
Meyer 2001; Walsh et al. 2005). The apparent
threshold that we observed in both regions is evidence
that significant biological degradation is associated
with minimal urbanization in a variety of natural
settings, but our methods can neither be used to
identify specific threshold values and associated
uncertainty, nor isolate the actual causal factors that
underlie this phenomenon (Paul and Meyer 2001).
The probability of biological alteration in both
regions tended to increase as riparian forest land
cover decreased, but only below values of about 60%.
The probability of biological alteration was unrelated
to riparian forests above values >60% after averaging
the effects of all other predictors, which suggests that
significant buffers ameliorate the effects of other
human activities on the landscape (Roy et al. 2006;
Carline and Walsh 2007).

Biological condition appeared to be associated
with some natural factors in complex ways. Steep
declines in the probability of alteration were observed
in both regions as mean basin elevation increased to
approximately 200 m, followed by relatively modest
or no changes in probability at elevations >500 m.
This result may have emerged from the tendency of
watersheds with more topographic relief (and pre-
sumably higher mean elevation) to have generally less
landscape alteration than watersheds in valleys and
plains. The effect of soil properties on the probability
of biological alteration in both regions was “U”-shaped,
in that biological alteration decreased from low to
moderate values of soil thickness and percent clays,
but then increased precipitously from moderate to
high values. Interactions of basin soil characteristics
and other environmental factors in structuring stream
biological communities have been reported (Richards
et al. 1993), including the influence of basin soil
characteristics on reach-scale stream habitat (Davies
et al. 2000). Soil characteristics may also be surrogates
for basin geology, which is known to influence stream

biota through effects on geochemistry and stream
habitat (Pyne et al. 2007).

RF classification models generate model-averaged
estimates of the evidence that each observation
belongs to each class, which have potential use in
decision making. Every observation is classified in
RF models by aggregating predictions across trees
where it was excluded from model development. The
class in which the observation was most frequently
classified is selected, with tie “votes” (i.e., proportion
of trees in which the observation was classified into
each category) broken randomly. The proportion of
trees in which each observation was classified as
altered or unaltered is conceptually similar to evi-
dence obtained by model averaging (sensu Burnham
and Anderson 2002), and therefore more informative
than the simple binary prediction produced by the
model. The proportions convey information about
uncertainty in the sampling, assessment, and predic-
tive modeling processes, and therefore indicate the
level of confidence in each prediction. We would
likely have more confidence in the prediction for a
basin that was classified as altered in 90% of trees
(0.90 proportion) than one classified as such in only
50% of trees. This quantification of uncertainty in a
simple and understandable way allows decision
making in the face of imperfect information because
predictions and priorities can be weighted according-
ly. For example, sites classified with the highest
certainty (e.g., >90% or <10% of votes for alteration)
could reliably be considered as altered or unaltered
and therefore selected for targeted monitoring. This
simple approach could be used to screen a large
population of sites across a large geographic area in
order to prioritize targeted monitoring and assessment
efforts.

We illustrate how the votes for biological alteration
for unsampled Wisconsin basins can be applied in
decision making (Fig. 6). Chi-squared tests revealed
that environmental conditions in >98% of the 552
unsampled basins were similar to those of the
reference sites used to assess biological condition.
Figure 6 illustrates the proportion of votes across
2,000 classification trees that the stream at each basin
terminus was classified as biologically altered (i.e.,
loss of >20% of the expected taxa). Most basins with
a high proportion of votes were within or adjacent to
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urban areas. Several basins outside urban centers,
however, were also likely to be biologically altered,
which suggests that other anthropogenic activities
may be the cause of degradation in these areas. There
was reasonably good agreement between the model’s
predicted evidence for biological alteration (i.e.,
votes) and the biological condition of streams actually
sampled in Wisconsin (Fig. 6). In general, sampling
revealed biological alteration in basins with a moder-
ate to high modeled potential for alteration, and
sampling revealed unaltered biological condition in
basins with low modeled potential for alteration.
However, the model failed to detect biological
alteration in two (6%) basins, where the votes for
alteration were low (<0.33) but actual sampling
revealed otherwise. Also, the model predicted a high
probability of alteration in four (12%) basins where
sampling revealed biologically unaltered conditions.

We offer several considerations about the broad
application of this or similar models. First, on an
absolute scale, RF model predictions were an im-
provement over random classifications using prior
probabilities of group membership, as evidenced by
AUC values for the highlands (0.86) and lowlands
(0.82). These values indicate that in 86 or 82% of
trials, the predicted probability of being altered will
be greater at a randomly-chosen altered site than at a
randomly-chosen unaltered site. We therefore argue
that the application of such a model improves the
information available to managers, especially if
model-averaged votes are retained and considered in
decision making. Second, we emphasize that the data
used to construct the model were from targeted
samples so their representativeness of some larger
population of eastern US streams is unknown.
Nonetheless, we believe that the modeling effort
benefited from targeted sampling designed to
represent a large gradient of human disturbance.
Third, our definition of biological alteration is
limited to this study, largely because currently there
are not consistent definitions among jurisdictions
that conduct bioassessments (USGAO 2002; Davies
and Jackson 2006). Our measure also contained

inherent error (as do all approaches used in bio-
assessments), and surely increased the error with
which condition could be modeled in the present
study. Nevertheless, we believe that our definition is
biologically interpretable (>20% loss of native taxa
relative to reference conditions) and therefore broad-
ly applicable. Finally, we do not advocate replacing
biological sampling with models or using model
predictions for management decisions. Rather, we
emphasize that empirical models like those we
produce can be useful for making projections as a
tool to screen large numbers of basins for targeted
monitoring aimed at selecting reference-quality or
severely degraded sites.

Conclusions

In the absence of biological data, models may provide
sufficient evidence for informed predictions about
stream ecological conditions, and are therefore useful
for screening large numbers of potential basins and
prioritizing resources for targeted sampling and
assessment. Our results demonstrate that the occur-
rence of biologically impoverished streams can be
predicted with reasonable accuracy using widely
available geospatial variables. Machine learning
methods such as random forests were developed to
extract information from large amounts of data, and
are potentially powerful predictive tools for address-
ing objectives related to environmental monitoring
and decision making. The model produced site-
specific, model-averaged estimates that approximate
the degree of certainty in predictions, which can be
integrated in the decision-making process. The gen-
erality of the present model to other eastern US
streams is not certain, but evidence suggests that it
has broad applicability within certain environmental
limits.
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Fig. 6 Predictions of biological condition for unsampled
basins in southeast Wisconsin. Basins with bold boundaries
were those for which biological samples were collected.
Sampled basins that were assessed as biologically altered are
cross-hatched

�

Environ Monit Assess (2009) 151:143–160 155



A
p
p
en
d
ix

T
ab

le
3

G
eo
sp
at
ia
l
va
ri
ab
le
s
co
ns
id
er
ed

an
d
us
ed

to
pr
ed
ic
t
bi
ol
og

ic
al

co
nd

iti
on

in
92

0
w
ad
ea
bl
e
st
re
am

s
in

th
e
ea
st
er
n
U
S
A

V
ar
ia
bl
e

S
ou

rc
e
(u
ni
ts
)

V
ar
ia
bl
e

S
ou

rc
e
(u
ni
ts
)

L
at
itu

de
of

sa
m
pl
in
g
si
te

U
S
G
S
20

06
a

(d
eg
re
es
)

L
an
d
co
ve
r:

ur
ba
n
gr
as
sa

U
S
G
S
20

06
b
(%

)

L
on

gi
tu
de

of
sa
m
pl
in
g
si
te

U
S
G
S
20

06
a

(d
eg
re
es
)

L
an
d
co
ve
r:
w
oo

dy
he
rb
ac
eo
us

w
et
la
nd

sa
U
S
G
S
20

06
b
(%

)

D
ra
in
ag
e
ar
ea

a
U
S
G
S
20

06
a
(k
m

2
)

S
um

of
ur
ba
n
cl
as
se
s

U
S
G
S
20

06
b
(%

)
E
le
va
tio

n
at

sa
m
pl
in
g
si
te

U
S
G
S
20

06
d

(m
et
er
s)

S
um

of
ag
ri
cu
ltu

re
cl
as
se
s

U
S
G
S
20

06
b
(%

)

19
90

C
en
su
s
po

pu
la
tio

n
G
eo
L
yt
ic
s
20

01
(n
o.
/k
m

2
)

M
ea
n
an
nu

al
pr
ec
ip
ita
tio

na
D
ay
m
et

20
06

(c
m
)

L
an
d
co
ve
r:

op
en

w
at
er

a,
b

U
S
G
S
20

06
b
(%

)
M
ea
n
an
nu

al
te
m
pe
ra
tu
re

a
D
ay
m
et

20
06

(d
eg
re
es
)

L
an
d
co
ve
r:

lo
w

in
te
ns
ity

re
si
de
nt
ia
la

U
S
G
S
20

06
b
(%

)
M
ea
n
m
on

th
ly

pr
ec
ip
ita
tio

n:
Ja
nu

ar
y–

D
ec
em

be
r

D
ay
m
et

20
06

(c
m
)

L
an
d
co
ve
r:

hi
gh

in
te
ns
ity

re
si
de
nt
ia
la

U
S
G
S
20

06
b
(%

)
M
ea
n
m
on

th
ly

te
m
pe
ra
tu
re
:
Ja
nu

ar
y–

D
ec
em

be
r

D
ay
m
et

20
06

(d
eg
re
es
)

L
an
d
co
ve
r:
co
m
m
er
ci
al
/in

du
st
ri
al
a

U
S
G
S
20

06
b
(%

)
R
oa
d
de
ns
ity

G
eo
L
yt
ic
s
20

01
(k
m
/k
m

2
)

L
an
d
co
ve
r:
fo
re
st
ed

re
si
de
nt
ia
la

U
S
G
S
20

06
b
(%

)
S
tr
ea
m

de
ns
ity

a
G
eo
L
yt
ic
s
20

01
(k
m
/k
m

2
)

L
an
d
co
ve
r:
ba
re

a
U
S
G
S
20

06
b
(%

)
R
oa
d/
st
re
am

in
te
rs
ec
tio

ns
a

G
eo
L
yt
ic
s
20

01
(n
o.
/k
m

2
)

L
an
d
co
ve
r:
qu

ar
ry
/m

in
in
ga

U
S
G
S
20

06
b
(%

)
A
ve
ra
ge

ru
no

ff
19

71
–2

00
0a

W
ol
oc
k
an
d
M
ac
C
ab
e
19

95
(m

m
)

L
an
d
co
ve
r:
tr
an
si
tio

na
la

U
S
G
S
20

06
b
(%

)
P
er
ce
nt

ba
se

fl
ow

of
to
ta
l
fl
ow

a
W
ol
oc
k
an
d
M
ac
C
ab
e
19

95
(%

)
L
an
d
co
ve
r:
de
ci
du

ou
s
ev
er
gr
ee
n
m
ix
ed

fo
re
st
a

U
S
G
S
20

06
b
(%

)
P
er
ce
nt

D
un

ne
ov

er
la
nd

fl
ow

a
W
ol
oc
k
an
d
M
ac
C
ab
e
19

95
(%

)
L
an
d
co
ve
r:
sh
ru
bl
an
da

U
S
G
S
20

06
b
(%

)
P
er
ce
nt

H
or
to
n
ov

er
la
nd

fl
ow

a
W
ol
oc
k
an
d
M
ac
C
ab
e
19

95
(%

)
L
an
d
co
ve
r:
or
ch
ar
ds

a
U
S
G
S
20

06
b
(%

)
To

po
gr
ap
hi
c
w
et
ne
ss

in
de
xa

W
ol
oc
k
an
d
M
ac
C
ab
e
19

95
(%

)
L
an
d
co
ve
r:
gr
as
sl
an
ds

a
U
S
G
S
20

06
b
(%

)
G
ro
un

d
w
at
er

re
si
de
nc
e
tim

e
in
de
xa

W
ol
oc
k
an
d
M
ac
C
ab
e
19

95
(%

)
L
an
d
co
ve
r:
pa
st
ur
e/
ha
ya

U
S
G
S
20

06
b
(%

)
M
ea
n
ba
si
n
el
ev
at
io
na

U
S
G
S
20

06
d
(m

et
er
s)

L
an
d
co
ve
r:
ro
w

cr
op

sa
U
S
G
S
20

06
b
(%

)
M
ea
n
ba
si
n
sl
op

e
U
S
G
S
20

06
d
(%

)
M
ea
n
ba
si
n
ea
st
as
pe
ct
a

U
S
G
S
20

06
d
(%

)
M
ea
n
ba
si
n
no

rt
h
as
pe
ct
a

U
S
G
S
20

06
d
(%

)
C
oa
rs
e
so
ils

(5
m
m

si
ev
e)

by
w
ei
gh

ta
U
S
D
A

20
06

(%
)

In
de
x
of

ba
si
n
sh
ap
e
co
m
pa
ct
ne
ss

a
U
S
G
S
20

06
d
(u
ni
tle
ss
)

F
in
e
so
ils

(0
.0
74

m
m

si
ev
e)

by
w
ei
gh

ta
U
S
D
A

20
06

(%
)

S
oi
ls
in

S
TA

T
S
G
O

hy
dr
ol
og

ic
G
ro
up

A
a

U
S
D
A

20
06

(%
)

M
ed
iu
m

so
ils

(2
m
m

si
ev
e)

by
w
ei
gh

ta
U
S
D
A

20
06

(%
)

S
oi
ls
in

S
TA

T
S
G
O

H
yd

ro
lo
gi
c
G
ro
up

B
a

U
S
D
A

20
06

(%
)

S
oi
ls
–
pe
rc
en
t
si
lt
a

U
S
D
A

20
06

(%
)

S
oi
ls
in

S
TA

T
S
G
O

H
yd

ro
lo
gi
c
G
ro
up

C
a

U
S
D
A

20
06

(%
)

S
oi
ls
–
pe
rc
en
t
sa
nd

a
U
S
D
A

20
06

(%
)

S
oi
ls
in

S
TA

T
S
G
O

H
yd

ro
lo
gi
c
G
ro
up

D
a

U
S
D
A

20
06

(%
)

S
oi
l
er
od

ib
ili
ty

fa
ct
or

(U
S
L
eq
ua
tio

n)
a

U
S
D
A

20
06

(%
)

S
oi
ls
in

S
TA

T
S
G
O

H
yd

ro
lo
gi
c
G
ro
up

A
D
a

U
S
D
A

20
06

(%
)

S
oi
l
ra
in
fa
ll/
ru
no

ff
fa
ct
or

(U
S
L
eq
ua
tio

n)
a

U
S
D
A

20
06

(%
)

156 Environ Monit Assess (2009) 151:143–160



T
ab

le
3

(c
on

tin
ue
d)

V
ar
ia
bl
e

S
ou

rc
e
(u
ni
ts
)

V
ar
ia
bl
e

S
ou

rc
e
(u
ni
ts
)

S
oi
ls
in

S
TA

T
S
G
O

H
yd

ro
lo
gi
c
G
ro
up

B
D
a

U
S
D
A

20
06

(%
)

P
ro
te
ct
ed

la
nd

s,
m
os
t
pr
ot
ec
te
d

U
S
G
S
20

06
b
(%

)
S
oi
ls
in

S
TA

T
S
G
O

H
yd

ro
lo
gi
c
G
ro
up

C
D
a

U
S
D
A

20
06

(%
)

P
ro
te
ct
ed

la
nd

s,
pr
ot
ec
te
d

U
S
G
S
20

06
b
(%

)
S
oi
l
pe
rm

ea
bi
lit
ya

U
S
D
A

20
06

(%
)

P
ro
te
ct
ed

la
nd

s,
so
m
ew

ha
t
pr
ot
ec
te
d

U
S
G
S
20

06
b
(%

)
S
oi
l
av
ai
la
bl
e
w
at
er

ca
pa
ci
ty

a
U
S
D
A

20
06

(%
)

M
ai
ns
te
m

st
re
am

cl
as
si
fi
ed

as
“C

an
al
”,

“D
itc
h”
,

“P
ip
el
in
e”

or
“A

rt
if
ic
ia
l”

in
N
H
D
P
lu
sa

H
or
iz
on

D
at
a
S
ys
te
m
s
C
or
p.

20
06

(%
)

a S
oi
l
bu

lk
de
ns
ity

U
S
D
A

20
06

(%
)

D
am

s
in

th
e
m
ai
ns
te
m

bu
ff
er

a
U
S
A
C
E
,
20

06
(n
o.
/k
m
)

S
oi
l
or
ga
ni
c
m
at
te
ra

U
S
D
A

20
06

(%
)

S
tr
ea
m
s
cl
as
si
fi
ed

as
“C

an
al
”,

“D
itc
h”
,
or

“P
ip
el
in
e”

in
N
H
D
P
lu
sa

H
or
iz
on

D
at
a
S
ys
te
m
s
C
or
p.
,

20
06

(%
)

S
oi
l
de
pt
h
to

w
at
er

ta
bl
ea

U
S
D
A

20
06

(%
)

S
tr
ea
m
s
cl
as
si
fi
ed

as
“A

rt
if
ic
ia
l”

in
N
H
D
P
lu
sa

H
or
iz
on

D
at
a
S
ys
te
m
s
C
or
p.

20
06

(%
)

S
oi
l
ro
ck

de
pt
ha

U
S
D
A

20
06

(%
)

N
P
D
E
S
“m

aj
or
”
po

in
t
lo
ca
tio

ns
in

ba
si
n

U
S
E
PA

20
06

b
(n
o.
/k
m

2
)

S
oi
ls
–
pe
rc
en
t
cl
ay

a
U
S
D
A

20
06

(%
)

S
tr
ai
gh

tli
ne

di
st
an
ce

of
sa
m
pl
in
g
si
te

to
ne
ar
es
t

m
aj
or

N
P
D
E
S
po

in
t
in

ba
si
na

U
S
E
PA

20
06

b
(m

)
U
rb
an

(a
gr
ic
ul
tu
re
)
la
nd

co
ve
r
on

sl
op

es
≥5

%
U
S
G
S
20

06
a
(%

)

L
an
d
ar
ea

us
in
g
su
rf
ac
e
dr
ai
na
ge
,
fi
el
d
di
tc
he
s

(N
R
I
co
de

60
7)

a
U
S
G
S
20

06
b
(%

)
U
rb
an

(a
gr
ic
ul
tu
re
)
la
nd

co
ve
r
on

sl
op

es
≥1

0%
a

U
S
G
S
20

06
a
(%

)

S
tr
ai
gh

tli
ne

di
st
an
ce

of
sa
m
pl
in
g
si
te

to
ne
ar
es
t

m
aj
or

da
m

in
ba
si
n

U
S
A
C
E
20

06
(m

)
U
rb
an

(a
gr
ic
ul
tu
re
)
la
nd

co
ve
r
on

sl
op

es
≥2

0%
a

U
S
G
S
20

06
a
(%

)

A
ve
ra
ge

st
ra
ig
ht
lin

e
di
st
an
ce

of
sa
m
pl
in
g
si
te

to
al
l
m
aj
or

da
m
s
in

ba
si
na

U
S
A
C
E
20

06
(m

)
U
rb
an

(a
gr
ic
ul
tu
re
)
la
nd

co
ve
r
on

sl
op

es
≥3

0%
a

U
S
G
S
20

06
a
(%

)

T
ot
al

ni
tr
og

en
an
d
ph

os
ph

or
us

ap
pl
ic
at
io
na

R
ud

dy
et

al
.
20

06
(k
g/
km

2
)

T
ot
al

pe
st
ic
id
e
ap
pl
ic
at
io
na

U
S
G
S
20

07
(k
g/
km

2
)

a
G
eo
sp
at
ia
l
va
ri
ab
le
s
co
ns
id
er
ed

an
d
us
ed

b
L
an
d
co
ve
r
cl
as
se
s
w
er
e
co
m
pu

te
d
fo
r
en
tir
e
ba
si
ns

an
d
fo
r
ri
pa
ri
an

co
rr
id
or

Environ Monit Assess (2009) 151:143–160 157



References

Allan, J. D. (2004). Landscapes and riverscapes: The influence
of land use on stream ecosystems. Annual Review of
Ecology, Evolution, and Systematics, 35, 257–284.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–
32.

Burnham, K. P., & Anderson, D. R. (2002). Model selection
and multimodel inference: A practical information-theo-
retic approach. New York: Springer.

Carline, R. F., & Walsh, M. C. (2007). Responses to riparian
restoration in the spring creek watershed, central Pennsyl-
vania. Restoration Ecology, 15, 731–742.

Carlisle, D. M., & Meador, M. R. (2007). A predictive model
for the biological condition of macroinvertebrate assemb-
lages in eastern U.S. streams. Journal of the American
Water Resources Association, 43, 1194–1207.

Clark, R. T., Furse, M. T., Wright, J. F., & Moss, D. (1996).
Derivation of a biological quality index for river sites:
comparison of the observed with the expected fauna.
Journal of Applied Statistics, 23, 311–332.

Clark, R. T., Wright, J. F., & Furse, M. T. (2003). RIVPACS
models for predicting the expected macroinvertebrate
fauna and assessing the ecological quality of rivers.
Ecological Modelling, 160, 219–233.

Cuffney, T. F., Gurtz, M. E., & Meador, M. R. (1993). Methods
for collecting benthic macroinvertebrate samples as part of
the National Water-Quality Assessment Program. Open
File Report 93-406, US Geological Survey.

Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A.,
Hess, K. T., Gibson, J., et al. (2007). Random forests for
classification in ecology. Ecology, 88, 2783–2792.

Davies, S. P., & Jackson, S. K. (2006). The Biological
Condition Gradient: a conceptual model for interpreting
detrimental change in aquatic ecosystems. Ecological
Applications, 16, 1251–1266.

Davies, N. M., Norris, R. H., & Thoms, M. C. (2000).
Predication and assessment of local stream habitat features
using large-scale catchment characteristics. Freshwater
Biology, 45, 343–369.

Daymet 2006. Numerical Terradynamic Simulation Group:
University of Montana. Retrieved from www.daymet.org.

De’ath, G., & Fabricus, K. E. (2000). Classification and
regression trees: a powerful yet simple technique for
ecological data analysis. Ecology, 81, 3178–3192.

Fielding, A. H., & Bell, J. F. (1997). A review of methods for
the assessment of prediction errors in conservation
presence/absence models. Environmental Conservation,
24, 38–49.

Garzón, M. B., Blazek, R., Neteler, M., Sánchez de Dios, R.,
Ollero, H. S., & Furlanello, C. (2006). Predicting habitat
suitability with machine learning models: The potential
area of Pinus sylvestris L. in the Iberian Peninsula.
Ecological Modelling, 197, 383–393.

GeoLytics (2001). CensusCD 2000 and StreetCD 2000
CDROM. GeoLytics, Inc., East Brunswick: New Jersey.

Gilliom, R. J., Alley, W. A., & Gurtz, M. E. (1995). Design of
the National Water-Quality Assessment Program: Occur-
rence and distribution of water-quality conditions. US
Geological Survey Circular 1112, Sacramento, California.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements
of statistical learning: data mining, inference, and
prediction. New York: Springer.

Hawkins, C. P. (2006). Quantifying biological integrity by
taxonomic completeness: its utility in regional and global
assessments. Ecological Applications, 16, 1277–1294.

Hawkins, C. P., & Carlisle, D. M. (2001). Use of predictive
models for assessing the biological integrity of wetlands
and other aquatic habitats. In R. B. Rader, D. P. Batzer, &
S. A. Wissinger (Eds.), Bioassessment and management of
North American wetlands (pp. 59–83). New York: Wiley.

Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, J. W.
(2000). Development and evaluation of predictive models
for measuring the biological integrity of streams. Ecolog-
ical Applications, 10, 1456–1477.

Heinz Center (2002). The state of the nation’s ecosystems:
Measuring the lands, waters, and living resources of the
United States. The H. John Heinz III Center for Science,
Economics and the Environment, 1001 Pennsylvania Ave,
NW Suite 735 South, Washington, DC.

Horizon Systems Corporation (2006). National Hydrography
Dataset Plus (NHDPlus) Home: Horizon Systems Corpo-
ration. Retrieved August 2006 from http://www.horizon-
systems.com/nhdplus/.

King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E.,
Jordan, T. E., Kazyak, P. F., et al. (2005). Spatial
considerations for linking watershed land cover to ecolog-
ical indicators in streams. Ecological Applications, 15,
137–153.

Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R.
(2006). Predicting climate-induced range shifts: Model
differences and model reliability. Global Climate Change
Biology, 12, 1568–1584.

Liaw, A., & Wiener, M. (2002). Classification and regression
by random Forest. R News, 2/3, 18–22.

Moore, A. A., & Palmer, M. A. (2005). Invertebrate biodiver-
sity in agricultural and urban headwater streams: Implica-
tions for conservation and management. Ecological
Applications, 15, 1169–1177.

Moss, D., Furse, M. T., Wright, J. F., & Armitage, P. D. (1987).
The prediction of the macro-invertebrate fauna of unpol-
luted running-water sites in Great Britain using environ-
mental data. Freshwater Biology, 17, 41–52.

Moulton, S. R., II, Carter, J. L., Grotheer, S. A., Cuffney, T. F.,
& Short, T. M. (2000). Methods of analysis by the US
Geological Survey National Water Quality Laboratory:
Processing, taxonomy, and quality control of benthic
macroinvertebrate samples. Open File Report 00-212, US
Geological Survey.

Moulton, S. R., II, Kennen, J. G., Goldstein, R. M., &
Hambrook, J. A. (2002). Revised Protocols for Sampling
Algal, Invertebrate, and Fish Communities as Part of the
National Water-Quality Assessment Program. Open-file
Report 02-150, US Geological Survey.

Nilsson, C., Pizzuto, J. E., Moglen, G. E., Palmer, M. A.,
Stanley, E. H., Bockstael, N. E., et al. (2003). Ecological
forecasting and the urbanization of stream ecosystems:
challenges for economists, hydrologists, geomorpholo-
gists, and ecologists. Ecosystems, 6, 659–674.

Ostermiller, J. D., & Hawkins, C. P. (2004). Effects of sampling
error on bioassessments of stream ecosystems: applica-

158 Environ Monit Assess (2009) 151:143–160

http://www.daymet.org
http://www.horizon-systems.com/nhdplus/
http://www.horizon-systems.com/nhdplus/


tions to RIVPACS-type models. Journal of the North
American Benthological Society, 23, 363–382.

Parmenter, A. W., Hansen, A., Kennedy, R. E., Cohen, W.,
Langer, U., Lawrence, R., et al. (2003). Land use and land
cover change in the Greater Yellowstone ecosystem:
1975–1995. Ecological Applications, 13, 687–703.

Paul, M. J., & Meyer, J. L. (2001). Streams in the urban
landscape. Annual Review of Ecology and Systematics, 32,
333–365.

Paulsen, S. G., Hughes, R. M., & Larson, D. P. (1998). Critical
elements in describing and understanding our nation’s
aquatic resources. Journal of the American Water Resour-
ces Association, 34, 995–1005.

Potter, K. M., Cubbage, F. W., Blank, G. B., & Schaeberg, R.
H. (2004). A watershed-scale model for predicting
nonpoint pollution risk in North Carolina. Environmental
Management, 34, 62–74.

Prasad, A. M., Iverson, L. R., & Liaw, A. (2007). Newer
classification and regression tree techniques: bagging and
random forests for ecological predictions. Ecosystems, 9,
181–199.

Pyne, M. I., Rader, R. R., & Christensen, W. F. (2007).
Predicting local biological characteristics in streams: a
comparison of landscape classifications. Freshwater Biol-
ogy, 52, 1302–1321.

R Development Core Team (2006). R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0. Retrieved from http://www.R-project.org.

Richards, C., Host, G. E., & Arthur, J. W. (1993). Identification
of predominant environmental factors structuring stream
macroinvertebrate communities within a large agricultural
catchment. Freshwater Biology, 29, 285–294.

Roy, A. H., Freeman, M. C., Freeman, B. J., Wenger, S. J.,
Meyer, J. L., & Ensign, W. E. (2006). Importance of
riparian forests in urban catchments contingent on sedi-
ment and hydrologic regimes. Environmental Manage-
ment, 37, 523–539.

Ruddy, B. C., Lorenz, D. L., Mueller, D. K. (2006). County-
level estimates of nutrient inputs to the land surface of the
conterminous United States, 1982–2001: US Geological
Survey Scientific Investigations Report 2006-5012.

Strayer, D. L., Beighley, R. E., Thompson, L. C., Brooks, S.,
Nilsson, C., Pinay, G., et al. (2003). Effects of land cover
on stream ecosystems: Roles of empirical models and
scaling issues. Ecosystems, 6, 407–423.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R.
P., & Feuston, B. P. (2003). Random forest: a classification
and regression tool for compound classification and
QSAR modeling. Journal of Chemical Information and
Computer Science, 43, 1947–1958.

Tate, C. M., Cuffney, T. F., McMahon, G., Giddings, E. M. P.,
& Zappia, H. (2005). Use of an urban intensity index to
assess urban effects on streams in three contrasting
environmental settings. In L. R. Brown, R. H. Gray, R.
M. Hughes, & M. R. Meador (Eds.), Effects of urbaniza-
tion on stream ecosystems (pp. 291–316). Maryland:
American Fisheries Society Symposium 47.

Urban, D. L. (2002). Classification and regression trees. In B.
McCune & J. B. Grace (Eds.), Analysis of ecological
communities (pp. 222–232). Oregon: MjM Software Design.

US Army Corps of Engineers (2006). National Inventory of
Dams: U.S. Army Corps of Engineers. Retrieved July
2006 from http://crunch.tec.army.mil/nidpublic/webpages/
nid.cfm.

US Department of Agriculture (2006). US General Soil Map
(STATSGO)|NRCS NCGC. Retrieved from http://www.
ncgc.nrcs.usda.gov/products/datasets/statsgo/.

US Environmental Protection Agency (2000). Mid-Atlantic
highlands stream assessment. EPA/903/R-00/015.
U.S. Environmental Protection Agency, Philadelphia,
Pennsylvania.

US Environmental Protection Agency (2006a). Draft wadeable
streams assessment: A collaborative survey of the Nation’s
streams. EPA 841-B-06-002. Office ofWater,Washington DC.

US Environmental Protection Agency (2006b). National Pol-
lutant Discharge Elimination System (NPDES): US Envi-
ronmental Protection Agency. Retrieved June 2006 from
http://cfpub.epa.gov/npdes/.

US General Accounting Office (GAO) (2002). Water quality:
Inconsistent state approaches complicate nation’s efforts to
identify its most polluted waters. GAO-02-186. United
State General Accounting Office, 441 G. Street NW,
Washington, DC.

US Geological Survey (2006a). USGS National Water-Quality
Assessment Program (NAWQA). Retrieved from http://
water.usgs.gov/nawqa/.

US Geological Survey (2006b). MRLC consortium: National
Land Cover Dataset (NLCD). Retrieved from http://www.
mrlc.gov/.

US Geological Survey (2006c). National Hydrography Dataset
(NHD) Home Page. Retrieved from http://nhd.usgs.gov/.

US Geological Survey (2006d). National Elevation Dataset
(NED). Retrieved from http://ned.usgs.gov.

US Geological Survey (2007). Grids of agricultural pesticide
use in the conterminous United States, 1997: US Geolog-
ical Survey. Retrieved June 2007 from http://water.usgs.
gov/GIS/metadata/usgswrd/XML/agpest97grd.xml.

Van Sickle, J., Baker, J., Herlihy, A., Bayley, P., Gregory, S.,
Haggerty, P., et al. (2004). Projecting the biological
condition of streams under alternative scenarios of human
land use. Ecological Applications, 14, 368–380.

Van Sickle, J., Hawkins, C. P., Larsen, D. P., & Herlihy, A. T.
(2005). A null model for the expected macroinvertebrate
assemblage in streams. Journal of the North American
Benthological Society, 24, 178–191.

Venables, W. N., & Ripley, B. D. (2002). Modern applied
statistics with S. New York: Springer.

Vølstad, J. H., Roth, N. E., Mercurio, G., Southerland, M.
T., & Strebel, D. E. (2003). Using environmental
stressor information to predict the ecological status of
Maryland non-tidal streams as measured by biological
indicators. Environmental Monitoring and Assessment,
84, 219–242.

Wallace, J. B., Eggert, S. L., Meyer, J. L., & Webster, J. R.
(1997). Multiple trophic levels of a stream linked to
terrestrial litter inputs. Science, 277, 102–104.

Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D.,
Groffman, P. M., & Morgan, R. P., II (2005). The urban
stream syndrome: current knowledge and the search for a
cure. Journal of the North American Benthological
Society, 24, 706–723.

Environ Monit Assess (2009) 151:143–160 159

http://www.R-project.org
http://crunch.tec.army.mil/nidpublic/webpages/nid.cfm
http://crunch.tec.army.mil/nidpublic/webpages/nid.cfm
http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/
http://www.ncgc.nrcs.usda.gov/products/datasets/statsgo/
http://cfpub.epa.gov/npdes/
http://water.usgs.gov/nawqa/
http://water.usgs.gov/nawqa/
http://www.mrlc.gov/
http://www.mrlc.gov/
http://nhd.usgs.gov/
http://ned.usgs.gov
http://water.usgs.gov/GIS/metadata/usgswrd/XML/agpest97grd.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/agpest97grd.xml


Wolock, D. M., Fan, J., & Lawrence, G. B. (1997). Effects of
basin size on low-flow stream chemistry and subsurface
contact time in the Neversink River watershed, New York.
Hydrological Processes, 11, 1273–1286.

Wolock, D. M., & McCabe, G. J. (1995). Comparison of single
and multiple flow-direction algorithms for computing
topographic parameters in TOPMODEL. Water Resources
Research, 31, 1315–1324.

Wright, J. F., Sutcliffe, D. W., & Furse, M. T. (Eds.) (2000).
Assessing the biological quality of fresh waters: RIVPACS
and other techniques. United Kingdom: Freshwater Bio-
logical Association.

Yates, A. G., & Bailey, R. C. (2006). The stream and its altered
valley: Integrating landscape ecology into environmental
assessments of agro-ecosystems. Environmental Monitor-
ing and Assessment, 114, 257–271.

160 Environ Monit Assess (2009) 151:143–160


	Predicting...
	Abstract
	Introduction
	Materials and methods
	Study area and data collection
	Assessing biological condition
	Geospatial data and predictor selection
	Statistical modeling

	Results and discussion
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


