

I. What is it?

A. Decomposition is physical and chemical breakdown of dead organic matter

- Provides energy for microbial growth (draw)
- Not all C can be metabolized: leftovers enter SOM pool, which influences ecosystem carbon storage (and therefore climate).
- Releases nutrients for plant uptake

B. Decomposition consists of three processes occurring simultaneously

- 1. Leaching by water
 - Transfers soluble materials
- 2. Fragmentation by soil animals
 Increases surface area for microbial attack
- 3. Chemical alteration
 - Available C metabolized
 - Changes chemical composition of remaining detritus

Leaching

- Moves water-soluble compounds away from decomposing material
- Begins while leaves are still on plant
- Most important early in decomposition

II. Who are the decomposers and why do they do it?

- Decomposer organisms are subject to natural selection
- Decomposition is result of their feeding activity and population dynamics
- NOT a community service to the carbon cycle
 - They don't care about whether their activity promotes nutrient cycling and productivity of ecosystems

1. Chemical Alteration by Fungi

- Fungi are the main initial decomposers of terrestrial dead plant material and, together with bacteria, account for 80-90% of the total decomposer biomass and respiration
- Fungi have networks of **hyphae** (i.e., filaments that enable them to grow into new substrates and transport materials through the soil over distances of cm to m)
- Hyphal networks enable fungi to acquire their carbon in one place and their N in another
- White-rot fungi decompose lignin to get at N

Fungi (cont'd)

- Fungi account for 60-90% of the microbial biomass in forest soils, where litter frequently has a high lignin and low N concentration
- They have a competitive advantage at low pH, which is also common in forest soils
- Fungi make up about half the microbial biomass in grassland soils where pH is higher, and wood is absent
- Most fungi lack a capacity for anaerobic metabolism and are therefore absent from or dormant in anaerobic soils and aquatic sediments

2. Chemical Alteration by Bacteria

- Grow rapidly
- Specialize on labile substrates
- Some bacteria function anaerobically
- Dependent on substrates that diffuse to bacterium (not like fungi)
- Diffusion gradient caused by
 - Production of soluble substrates (enzymes)
 - Uptake of substrates by
 - bacterium

Bacteria (contd)

- Spatial specialists
 - Rhizosphere, macropores, interior of aggregates
 - form biofilms on particle surfaces
- Chemical specialists
 - Different bacteria produce different enzymes (consortia)

Bacteria (contd)

- Become inactive when substrate is exhausted
 - 50 to 80% of soil bacteria inactive
- Activated by presence of substrate

 e.g., when root grows

past

Soil animals: mesofauna

- Animals with greatest effect on decomposition
- Fragment litter
- Ingest litter particles and digest the microbial jam
- Produce large amounts of fecal material with a greater surface area and moistureholding capacity than the original litter

Soil Animals (Mesofauna)

- Springtails (Collembola) are small insects that feed primarily on fungi
- Collembolans are important mesofauna in northern soils
- Mites (Acari) are a more trophically diverse group of spider-like animals that consume decomposing litter or feed on bacteria and/or fungi

Soil animals: macrofauna

- Earthworms, termites, etc.
- Earthworms, termites, etc. Fragment litter or ingest soil Earthworm digestive tract stimulates microbial activity, so soil microbes act as gut **mutualists** Earthworms are most abundant in the temperate zone, whereas termites are most abundant in tropical soils.
- Termites eat plant litter directly, digest the cellulose with the aid of mutualistic protozoans in their guts, and mix the organic matter into the soil

Soil Animals The soil fauna is critical to the carbon and nutrient dynamics of soils. Microbes contain 70 to 80% of the labile C and N in soils, so variations in predation rates of microbes by fauna dramatically alter C and N turnover in soils Soil animals account for only about 5% of soil respiration, so their major effect on

•

 Soil animals account for only about 5% of soil respiration, so their major effect on decomposition is their enhancement of microbial activity through fragmentation, rather than their own processing of energy derived from detritus

IV. Controls over decomposition

- A. Physical environment
- B. Substrate quantity and quality
- C. Properties of microbial community
- D. Humus formation

b. Indirect temperature effects

- Effects on evaporation and soil moisture
- Effects on permafrost - Changes in drainage
- Effects on quantity and quality of litter inputs

- Organic matter accumulation is greatest in wet soils.
- Decomp more sensitive to high moisture than is NPP (SOM accumulation in waterlogged soils)
- Oxygen diffusion is 10,000x slower through water than through air
- Decomp less sensitive to low moisture than is NPP (no litter accumulation in deserts)
- Generally, microbial activity optimal in moist soils

Substrate Quality

- **Substrate quality:** susceptibility of a substrate to decomposition measured under standardized conditions
 - (1) labile, metabolic compounds, such as sugars and amino acids
 - (2) moderately labile structural compounds such as cellulose and hemicellulose
 - (3) recalcitrant structural material such as lignin and defensive compounds such as condensed polyphenols

Substrate quality depends on:

- 1. Size of molecule
- 2. Types of chemical bonds
- 3. Regularity of structure
- 4. Toxicity
- 5. Nutrient concentrations

Substrate Quality Predictors

- C:N ratio (or [N]) Why does it work?
 Litter C:N = 100:1, microbe 10:1
 - If respire 50% of C, C:N 50:1; still too much C
 - Need to import N, slows decomposition (but direct additions of N only speed decomp when not limited by available C).
- Lignin:N ratio
 - Integrated measure of N concentration and substrate size/complexity

Substrate quality of SOM Much of SOM is old and recalcitrant Consists of "leftovers" and microbial products Binds to clay minerals Bulk soil is a "nutritional desert"

Major controls over decomposition

- Quantity of litter input
- $\boldsymbol{\cdot}$ Quality of litter input
- Environmental conditions that favor biological activity

