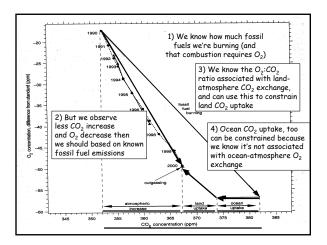
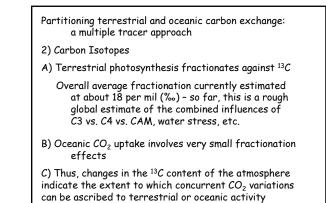
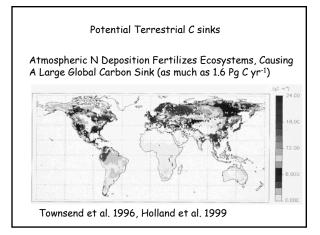


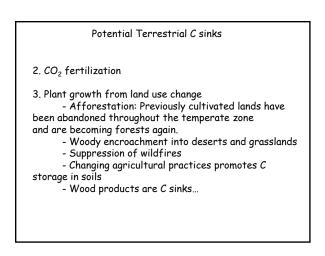
Major Global C pools Atmosphere, land & oceans contribute to cycling over decades-centuries. Rocks have the largest pool of C, but

- changes are small on these time scales • Main pools on land are organic C
- Main pools on land are organic c (terrestrial biota & SOM) (~3x atmosphere)
- Main pool in oceans is dissolved inorganic C. Aquatic biota are a relatively small pool.

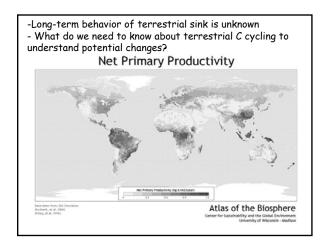


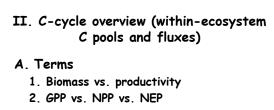

Major global C fluxes

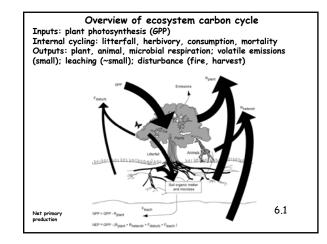

- Terrestrial systems: fires, het resp roughly balance NPP
- Oceans take up ~2 Pg more than they release→deep storage (biol & solubility pumps)
- Humans adding C to atmosphere through fossil fuels & land use change.

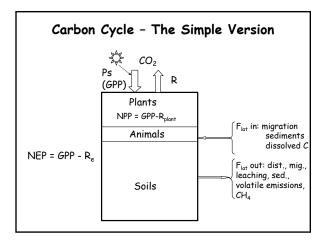

Global Carbon Budgeting	
How much have we released in f Where is it all going?	ossil fuel burning?
<i>Sources:</i> Fossil Fuel Burning Land use change	$\frac{Pg C yr^{-1}}{7.1 \pm 1.1}$ 5.5 ± 0.5 1.6 + 1.0
<i>Sinks:</i> Atmospheric accumulation	7.1 3.2 ± 0.2
Oceanic Uptake	1.6 ± 1.0
The "Missing Sink" Oceanic? Terrestrial?	2.3 9 Why?

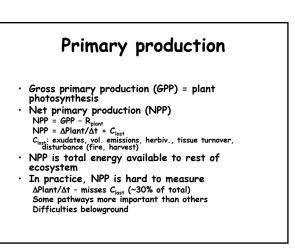
How do we figure this out?
Partitioning terrestrial and oceanic carbon exchange: a multiple tracer approach
 Oxygen A) Land-atmosphere CO₂ exchange is immediately coupled with O₂ exchange: photosynthesis produces O₂, respiration consumes it
B) Ocean-atmosphere CO_2 exchange is physical dissolution, so oceanic CO_2 uptake does not influence atmospheric O_2
C) Thus, the relationship between the CO_2 and O_2 content of the atmosphere provides a fingerprint of terrestrial and oceanic CO_2 exchanges

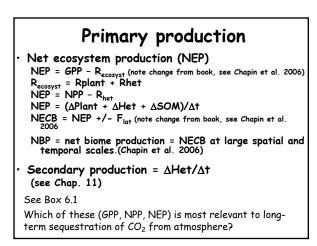


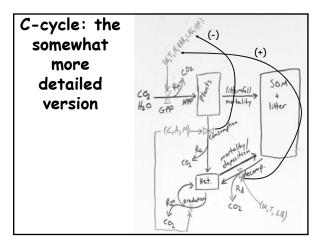


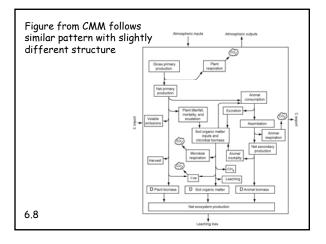



Global Carbon Budgeting How much have we released in fo Where is it all going?	ossil fuel burning?
	Pg C yr-1
Sources:	7.1 ± 1.1
Fossil Fuel Burning	5.5 ± 0.5
Land use change	1.6 ± 1.0
Sinks:	7.1
Atmospheric accumulation	3.2 ± 0.2
Oceanic Uptake	1.6 ± 1.0
Terrestrial Uptake	2.1
CO ₂ fertilization	1.0 ± 0.5
Forest Regrowth	$\textbf{0.5} \pm \textbf{0.5}$
Nitrogen Deposition	0.6 ± 0.3
Other	0.2 ± 2.0






- 3. Secondary production
- B. C-cycle schematic
 - 1. Simple
 - 2. Complete



Main messages

- \cdot C flow is linked to energy flow
- C cycles, energy flow is one-way
- Plant production provides the fuel for the entire ecosystem
- · GPP>NPP>NEP
- \cdot GPP, NPP determine how fast C taken up by ecosystem
- NEP determines how much C <u>stored</u> by ecosystem per unit time