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Course goals

Have you develop a firm understanding of the concepts and
mechanisms of ecosystem ecology;

Have you enhance your understanding of how human
society is altering ecosystems, some of the problems that
entails, and some of the solutions that might be possible.

3) Developing skills in critical thinking by discussing the

scientific literature;

4) Improve your writing skills;
5) Introduce you to the primary literature and some of the

current “hot topics” being studied and debated in the field;

I. What is ecosystem ecology?

Definition: studies of interactions among organisms
and their physical environment as an integrated

system.
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I1. Why should we care about
ecosystem ecology?

1. Ecosystem ecology provides a mechanistic
basis for understanding the Earth System.

2. Ecosystems provide goods and services to
humanity.

Ecosystem goods and services
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Ecosystem goods and services

Goods Services

- Food - Soil fertility

- Fuel - Climate regulation

- Fiber - Pollination, pest control
- Medicines - Recreation

- Etc. - Etc.




Why should we care about
ecosystem ecology?
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Enhanced Greenhouse Effect

1. Sunlight warms
earth's surface.

2. Earth’s surface
radiates heat.

3. When greenhouse gases
build up, more heat is
trapped near earth's
surface.

Starr and Taggart 1997
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Temporal scales

For example, photosynthesis:
Instantaneous

Daily

Seasonal

Yearly

Successional

Species migrations
Evolutionary history
Geological history

IV. Controls on Ecosystem Processes
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A. State factors
B. Interactive controls

Topographic differences in plant production and
nutrient availability in California grasslands

Taken on the same date

Correlated changes in environment drive ecosystem
differences across topographic gradients.
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Hawai’i as a model ecosystem: Non-correlated gradients
help understand effects of different state factors
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Reciprocal transplant experiments test effects
of site vs. substrate
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