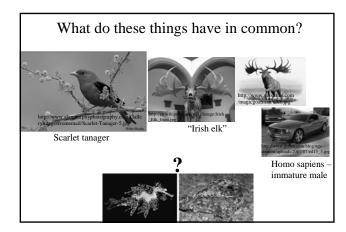
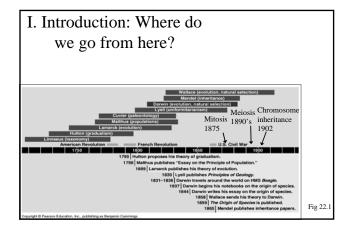
Evolutionary Processes

- I. Introduction The modern synthesis Reading: Chap. 25 II. No evolution: Hardy-Weinberg equilibrium
 - A. Population genetics
 - B. Assumptions of H-W
- III. Causes of microevolution (forces leading to genetic change)
 - A. Natural selection
 - B. Genetic Drift
 - C. Gene flow
 - D. Mutation
 - E. Nonrandom mating

Terms and Concepts

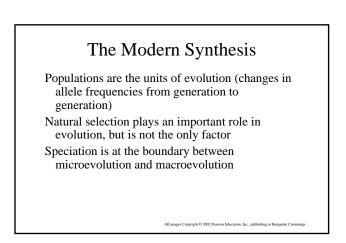

species, population


population genetics

gene pool, allele frequencies

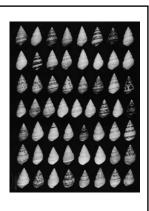
Hardy-Weinberg equilibrium, non-evolving population

- Genetic drift, sampling effect, bottleneck effect, founder effect
- Natural selection: directional selection, stabilizing selection, diversifying selection, sexual selection.



The Modern Synthesis: Started in 1930's Integrates ideas from many different fields:

Darwinia evolution Mendelian genetics Population genetics Comparative morphology & molecular biology Taxonomy – relationships of taxa Paleontology – study of fossils


Paleontology – study of fossils Biogeography – distribution of species Applications (to name just a few) :

Medical microbiology Medical genetics Forensic science (e.g., DNA evidence) Conservation biology Agricultural policy (e.g., crop breeding, pest resistance)

Microevolution (Ch 25 – Evolutionary processes) generation-to-generation changes in allele frequencies within populations. (occurs even if only a single locus in a population changes)

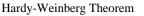
Macroevolution (Ch 26 – Speciation) - development of new species (and higher taxa).

II. Hardy-Weinberg equilibrium:

Bottom line: H-W is what happens when populations are NOT evolving.

A. The genetics of populations

Population = localized, interbreeding group of individuals of one species

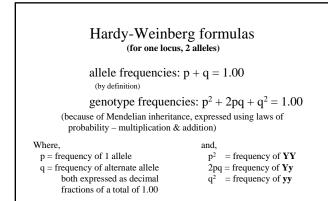

Population gene pool = all the alleles of all the individuals in the population

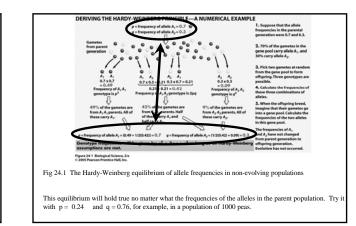
Consider one locus,

If you could count all alleles in all individuals, e.g. in a population of yellow- and green-seeded peas

There are **YY**, **Yy** and **yy** individuals

Of all the <u>alleles</u>, a certain fraction are **Y**, say p is that fraction Then the rest of the <u>alleles</u> are **y**; that fraction is q

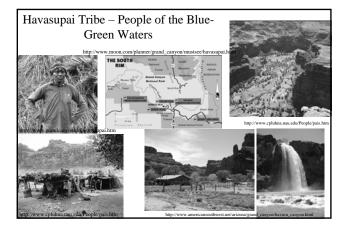

H-W: In populations with Mendelian transmission of traits (i.e, segregation, independent assortment), in the absence of other forces,


Frequencies of alleles & genotypes in a population's gene pool remain the same for any number of generations.

That is, meiosis and random fertilization do not lead to evolution.

H-W equilibrium relies on certain assumptions (upcoming)

Expressed by the formulas on the next page


B. Assumptions of Hardy-Weinberg equilibrium

- 1. No selection (natural or artificial)
- 2. No genetic drift (very large population size, no sampling effect)
- 3. No migration (no gene flow in or out)
- 4. No mutations (change in form of an allele the ultimate source of genetic change)
- 5. Random mating
- Therefore, H-W equilibrium is a null hypothesis.

An example: Is there selection for heterozygotes in HLA genes? (see pp. 507-8)

2 genes: HLA-A, HLA-B Code for proteins important in immune system Co-dominant

Hypothesis: more proteins, greater disease resistance

HLA genes in the Havasupai People

TABLE 24.2 Do HLA Genotype Frequencies ofHumans Conform to the Hardy-Weinberg Model?

	Observed Number	Expected Number
HLA-A		
Homozygotes	38	48
Heterozygotes	84	74
HLA-B		
Homozygotes	21	30
Heterozygotes	101	92
	HLA polymorphism in the erican Journal of Human G	

Why the difference between H-W and observed genotypes in Havasupai People?

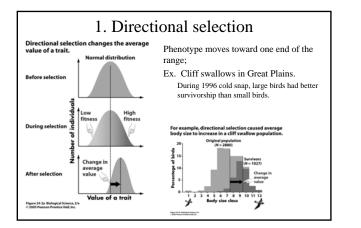
Why is H-W theorem important?

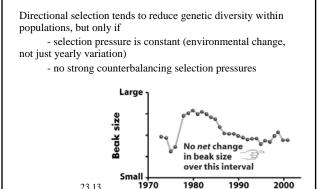
- 1. Extends Mendelian genetics of individuals to population scale (where evolution works).
- 2. Shows that if Mendelian genetic processes are working, variation is maintained at the population level.
- 3. Gives a baseline (NULL HYPOTHESIS) against which to measure evolutionary change. (Good examples in your book: MN locus, HLA genes)

III. Causes of microevolution

- A. Natural selection
- B. Genetic drift
- C. Gene flow
- D. Mutation
- E. Nonrandom mating

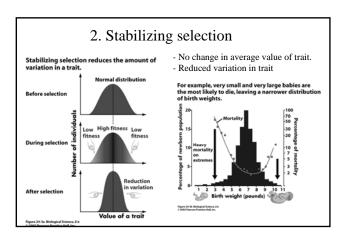
All are departures from the conditions required for the Hardy-Weinberg equilibrium

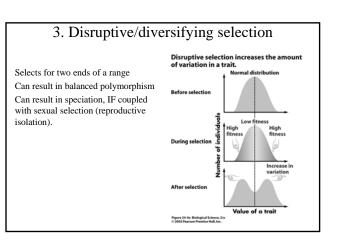

A. Natural selection

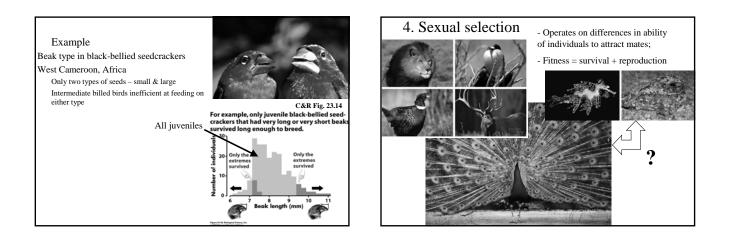

Only factor that generally adapts a population to its environment. The other three factors may effect populations in positive, negative, or neutral ways.

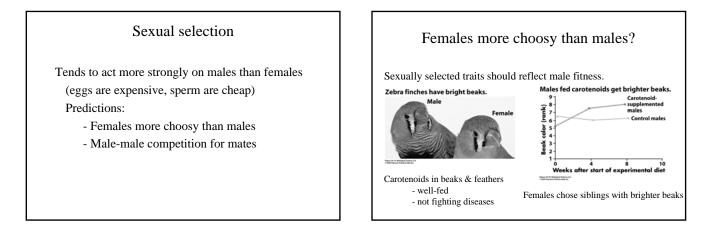
- Four types:
- 1. Directional
- 2. Stabilizing

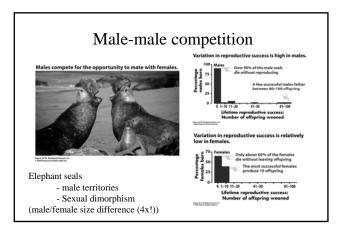
23.13

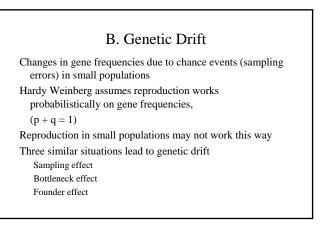

- 3. Disruptive/diversifying
- 4. Sexual selection

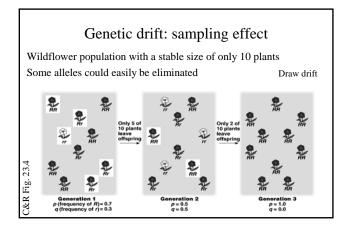


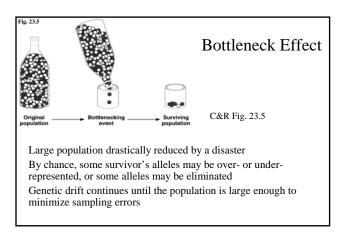


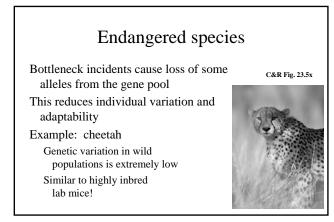

1970


2000









Founder effect

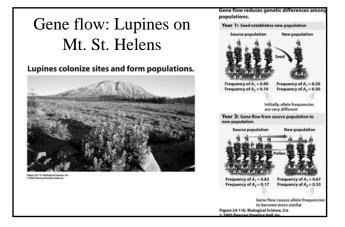
New population starts with a few individuals not genetically representative of a larger source population.

Extreme: single pregnant female or single seed More often larger sample, but small

Genetic drift continues until the population is large enough to minimize sampling errors

C. Gene flow

Genetic exchange due to migration of alleles


Fertile individuals

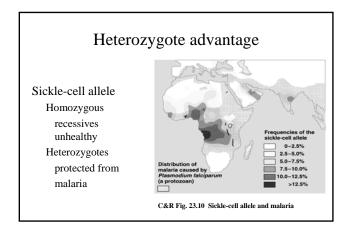
Gametes or spores

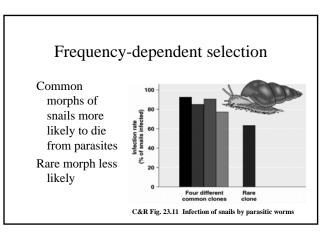
Example:

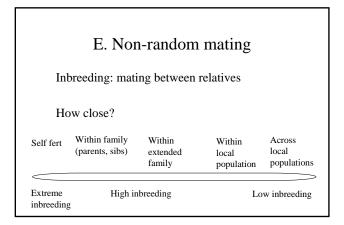
Wildflower population has white flowered plants only Pollen (with *r* alleles only) could be carried to another nearby population that lacks the allele.

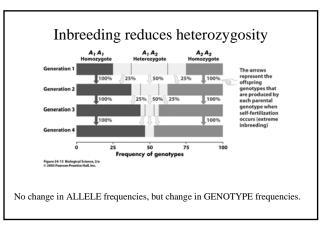
Gene flow tends to reduce differences between populations

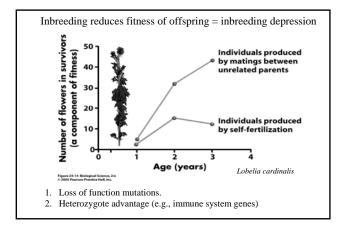
D. Mutation


Change in DNA Rare and random More likely to be harmful than beneficial **Only mutations in cell lines that produce gametes can be passed along to offspring** One mutation does not affect a large population in a


- single generation Very important to evolution over the long term The only source of new alleles
 - Other causes of microevolution redistribute mutations


What keeps mutations?


Diploidy – masks recessive alleles Hardy-Weinberg Equilibrium says that, without natural selection, gene frequencies remain the same


A balance of recessive alleles can be kept even without Hardy-Weinberg Heterozygote advantage Frequency-dependent selection

