Mendelian Genetics

Reading: Chap. 13, pp. 265-276, 282-286

I. Intro

- A. Motivating question
- B. Mendel
- II. Mendel's findings
 - A. Mendel's experiments
 - B. Law of segregation of alleles
 - C. Law of independent assortment of traits
- III. Complications

Terms and Concepts

- character, trait, alleles, locus
- homozygous/heterozygous
- phenotype/genotype
- P, F1, F2
- dominant/recessive - law of segregation
- law of independent assortment
- Testcross
- Rules of probability
- Incomplete dominance
- codominance
- Quantitative characteristics

What Darwin didn't know:

How did heritability work?

What exactly <u>was</u> passed down from parents to offspring?

No idea about: Genes, chromosomes, DNA, mitosis and meiosis

Blending vs. particulate inheritance?

What did he do?

Pea breeding

- Testing mechanisms of inheritance: blending vs. acquired characteristics (e.g., Lamarck)
- Used many different characters Published results in 1865

Mendel didn't know about chromosomes either!

- Results were buried for ~40 years not broadly accepted until ~16 years after his death.
- •Early in the 20th century, Sutton and Boveri (working independently) formulated the chromosome theory of inheritance, which proposes that meiosis causes the patterns of inheritance that Mendel observed.

II. What did Mendel find?

- A. Mendel's experiments
- B. Law of segregation (of alleles)
- C. Law of independent assortment (of traits)

Table 14.1 The Results of Mendel's Fg Crosses for Seven Characters in Pea Plants						
Character	Dominant Trait	*	Recessive Trait	F2 Generation Dominant Recessive	Ratio	
Plawer color	9	×	A	705.224	3.154	3 to 1!!
	Purple		White			5 10 1 !!
Hower position	1	×	¥	631-207	3.14.1	
	Axial		Terminal			
Seed onlor	Mare	×	O Green	6022-2001	3.01.1	
Seed shape		×		5474.1830	2.961	
Pod shape	-	×	Contribut	882.299	2.95.1	
Ped color		×		438.152	2.821	
Sem length	1	×	- How	787-277	2.841	

endel's res					
generation henotype	0	S	•	63	
umber	315	101	108	32	556 total
action of ffspring	9/16	3/16	3/16	1/16 -	

Rules of	probability
YYBR	From YyRr x YyRr
Gametes (m) × (m) YvRr	Yellow round: YYRR YYRr YyRR YyRr (1/4*1/4) + (2*1/4*1/4)+(2*1/4*1/4)+(4*1/4*1/4)
Ova %	= 9/16 Green round: yyRR yyRr (1/4*1/4) + (2*1/4*1/4) = 3/16
10(10) - 17,000 - 17,	Yellow wrinkled: YYrr Yyrr (1/4*1/4) + (2*1/4*1/4) = 3/16
Experimental results Support hypothesis (b) Hypothesis: independent assortment	Green wrinkled: yyrr $(1/4*1/4) = 1/16$

Law of independent assortment (of characters)

"Independent segregation of each pair of alleles (i.e., genes coding for each character) during gamete formation."

Did Mendel get lucky?

(not that way - he was a monk!)

- 1. Genes for traits he studied were either on separate chromosomes, or
- 2. Far enough apart on the same chromosome that they assorted independently

	B. Multiple alleles – co-	dominance			
	TABLE 13.1 The ABO Blood Types in Humans				
		ABO blood types are produced by locus. Three alleles are common in			
	Phenotype (blood type)	Genotype			
	O A B AB	ii I ^A I ^A or I ^A i I ^B I ^B or I ^B i I ^A I ^B			
	$i =$ recessive l^{A} and $l^{B} =$ codominant				
	Table 13-1 Biological Science, 2/e	© 2005 Pearson Prentice Hall, Inc.			
Re	d hair?				

IV. Summary: KEY CONCEPTS

Mendel discovered that in garden peas, individuals have two factors, or versions, representing each trait.

- We now know these are alleles different versions of each gene.
- Prior to the formation of eggs and sperm, the two
- alleles of each gene separate.
- One allele is transmitted to each egg or sperm cell.

KEY CONCEPTS

Genes are located on chromosomes.

The separation of homologous chromosomes during meiosis I explains why alleles of the same gene segregate to different gametes.

KEY CONCEPTS

If genes are located on different chromosomes, then the alleles of each gene are transmitted to egg cells and sperm cells independently of each other.

KEY CONCEPTS

- Important exceptions exist to the rules that individuals have two alleles of each gene and that alleles of different genes are transmitted independently.
 - Genes on the same chromosome are not transmitted independently of each other.
 - some traits are controlled by more than one gene, or genes exhibit incomplete dominance or are co-dominant.