The Basis for Heritability: Mitosis and Meiosis

- Ch. 11: 222-223, 227-231
- Ch. 12: less emphasis on 249-50
- I. Overview
 - A. What Darwin didn't know
 - B. Getting cells from cells
- II. Mitosis
 - A. The bottom line
 - B. How it happens
- III. Meiosis
 - A. Main points
 - B. Terminology
 - C. Basic process
 - D. How meiosis increases genetic diversity
 - E. Mistakes in meiosis

Let's start with a banana....

 There are 2 types of cell division: Mitosis – growth, wound repair, asexual reproduction. somatic cells Meiosis – sexual reproduction only; formation of sex cells (gametes)

II. Mitosis

- A. Main points
- "Duplication division"
 - * 1 cell \rightarrow 2 cells identical to each other and starting cell
- Only mode of reproduction in asexual organisms
- Important for understanding cancer (but details in 205)
- Happens in ALL eukaryotic cells, except:
 - * Cells that have stopped dividing
 - * Cells that undergo meiosis (next topic)

http://www.youtube.com/watch?v=s1ylUTbXyWU&mode =related&search=The%20Mitosis%20Cycle%20Cells%20 Cell%20Jacob%20Movie%20Quirke%20Coolness%20Fu nny%20HaHa%20Movies%20for%20Squares

http://www.youtube.com/watch?v=DD3IQknCEdc&featur e=related

What is the result of mitosis?

- # of cells?
- Ploidy?
- Similar/dissimilar?
- "Dance of the chromosomes"
- <u>http://www.youtube.com/watch?v=eFuCE2</u> 2agyM

III. Meiosis

- A. Main points
- Meiosis = sex
 Only happens to form "sex" cells of <u>eukaryotes</u>:
 * Gametes sperm and eggs (unite as zygotes in fertilization)
 * Haploid spores (grow into haploid adults)
- "Reduction division"
 - * 1 cell → 4 cells, each daughter cell has half the number of chromosomes as parent cell (e.g., diploid → haploid)
- Meiosis increases genetic variation
- Daughter cells and resulting zygotes are genetically distinct from parents

B. Definitions

- Gamete– haploid sex cells that fuse to form a zygote
- Syngamy (fertilization) the process of sexual fusion
- Zygote first diploid cell following fertilization
- Chromosome number
- Ploidy number of copies of each chromosome
 - * Diploid 2n double set of chromosomes
 - * Haploid 1n single set of chromosomes
 - * Polyploid >2 copies of each chromosome

Organism	Number of Different Types of Chromosomes (haploid number <i>n</i>)	Diploid Chromosome Number (2 <i>n</i>)
Humans	23	46
Domestic dog	36	72
Fruit fly	4	8
Chimpanzee	24	48
Bulldog ant	1	2
Garden pea	7	14
Corn (maize)	10	20

Changing environment hypothesis

- Being genetically identical is fine is your environment is relatively constant;
- Genetic variation may be better if environment changes; provides the fodder for evolutionary adaptation.
- Abiotic environment does change;
- Biotic environment can change even faster: new diseases and parasites → strong selection pressure

3. Random fertilization leads to genetic variability:

The random assortment of a woman's 23 chromosomes leads to 8 million possible combinations.

The random assortment of a man's 23 chromosomes leads to 8 million different possible combinations.

Summary com	parison of mito	sis and meiosis	
Feature	Mitosis	Meiosis	
Number of cell divisions	One	Two	
Number of chromosomes in daughter cells, compared with parent cell	Same	Half	
Synapsis of homologs	No	Yes	
Number of crossing-over events	None	One or more per pair of homologous chromosomes	
Makeup of chromosomes in daughter cells	Identical	Different—only one of each chrom some type present, paternal and maternal segments mixed within chromosomes	
Role in life cycle	Asexual reproduction in eukaryotes; cell division for growth of multicellular organisms	Precedes production of gametes in sexually reproducing animals	
gure 12-5 part 3 Biological Science, 2/e		© 2005 Pearson Prentice Hall, In-	

E. Problems with meiosis

TABLE 12.4 The Incidence of Trisomy in Humans: Effects of Chromosome Number and Paternal versus Maternal Origin

Trisomy (chromosome number)	Total Number of Cases	Due to Error in Sperm	Due to Error in Egg	Maternal Errors (%)
2-12	16	3	13	81
13	7	2	5	71
14	8	2	6	75
15	11	3	8	73
16	62	0	62	100
18	73	3	70	96
21	436	29	407	93
22	11	0	11	100

IV. Life cycles Diagrams of a generation in the life of an organism A good way to remember some of the biological details of organisms

• Human life cycle typical for animals but there are many others

