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Vestimentiferan tubeworms thriving in sulfidic deep-sea hydrothermal vents and cold seeps are constrained
by their nutritional reliance on chemoautotrophic endosymbionts. In a recent phylogenetic study using 16S
ribosomal DNA, we found that endosymbionts from vent and seep habitats form two distinct clades with little
variation within each clade. In the present study, we used two different approaches to assess the genetic
variation among biogeographically distinct vestimentiferan symbionts. DNA sequences were obtained for the
noncoding, internal transcribed spacer (ITS) regions of the rRNA operons of symbionts associated with six
different genera of vestimentiferan tubeworms. ITS sequences from endosymbionts of host genera collected
from different habitats and widely distributed vent sites were surprisingly conserved. Because the ITS region
was not sufficient for distinguishing endosymbionts from different habitats or locations, we used a DNA
fingerprinting technique, repetitive-extragenic-palindrome PCR (REP-PCR), to reveal differences in the dis-
tribution of repetitive sequences in the genomes of the bacterial endosymbionts. Most of the endosymbionts
displayed unique REP-PCR patterns. A cladogram generated from these fingerprints reflected relationships
that may be influenced by a variety of factors, including host genera, geographic location, and bottom type.

Invertebrates that are endemic to the highly sulfidic, reduc-
ing environments at deep-sea hydrothermal vents and cold
seeps are commonly associated with chemosynthetic endosym-
biotic bacteria (7, 18, 19). These bacteria oxidize the reduced
sulfur compounds that are abundant in hydrothermal fluid (8,
36, 46). The resultant energy produced by the endosymbiont is
coupled to the production of carbon sources that support the
growth and maintenance of the invertebrate hosts (6, 8, 37, 48).
The metabolic link between the invertebrate hosts and their
endosymbionts has obvious implications for the dispersal and
colonization strategies employed by the host organisms.

Vent endemic host organisms may employ one of three
different mechanisms for transmission of their endosymbionts
to the next generation. Previous studies have shown that the
Vesicomyid bivalves form species-specific associations with en-
dosymbiotic bacteria (12, 13, 16). Host specificity is maintained
in these associations by vertical transmission of the bacteria
through the egg from the parent to the offspring (3, 35). The
endosymbiont and host phylogenies are congruent, which is
consistent with a vertical mode of symbiont transmission (3, 4,
12, 35). In contrast, results from several studies suggest that
endosymbiont transmission in vestimentiferan tubeworms oc-
curs horizontally (5, 17), possibly through ingestion of bacteria
upon larval settlement (28, 42). It is also possible that horizon-
tal transmission in vestimentiferan-bacterial symbioses could
occur through infection of new recruits with bacteria previ-
ously associated with established congeners (20), although po-

tential mechanisms for this transfer have not been determined.
If horizontal transmission is indeed the mechanism for bacte-
rial acquisition in vestimentiferans, we expect that biogeo-
graphic variation would exist among symbionts acquired from
the same host species collected in geographically isolated vent
and seep sites. Conversely, if vestimentiferan larvae settle in
the same locations where their symbionts are acquired, we
expect that vestimentiferans living at the same site would har-
bor identical symbionts.

In a recent study, genetic variation in vestimentiferan endo-
symbionts was investigated by comparing sequences of the 16S
rRNA genes of bacteria collected from various species of hy-
drothermal vent and cold seep tubeworms (20). The results
showed a marked phylogenetic distinction between vestimen-
tiferan endosymbionts collected from hydrothermal vents and
soft-bottom, cold seep environments. This study suggested that
vestimentiferans acquire one of two distinct species of free-
living bacteria depending on whether they settle on basaltic,
hydrothermal vent sites or sedimented, cold seep sites. A third,
unique bacterial species was discovered in a tubeworm that
inhabited a sedimented whale fall. Significant genetic variation
was not found among symbionts found within each of the
habitat types. Symbionts from three different host genera col-
lected from five different hydrothermal vent sites along the
East Pacific Rise (EPR) had identical 16S rRNA gene se-
quences.

The observation of so little sequence variation among endo-
symbiont 16S rRNA genes suggests that all tubeworm en-
dosymbionts may belong to a single species. However, the
conservative nature of the 16S rRNA gene often renders it
inadequate for distinguishing among conspecific strains of bac-
teria (50). Therefore, it is not surprising that Feldman et al.
(20) did not find significant genetic variation within the habitat
clades. It is possible that significant genetic variation exists
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between endosymbionts of geographically distributed vesti-
mentiferan hosts but that these species- or strain-level differ-
ences have not been detected by approaches that have been
employed to date.

The goal of our study was to resolve the question of genetic
variation among widely distributed vestimentiferan endosym-
bionts by utilizing two molecular techniques that have histor-
ically proven useful for comparing closely related strains of
bacteria. Our first approach entailed sequencing of the internal
transcribed spacer (ITS) region, a noncoding region within the
rRNA that often contains genetic variation sufficient for dif-
ferentiating species of prokaryotes (2). Our second approach
involved using a DNA fingerprinting technique that utilizes
repetitive extragenic palindromes (REPs) as priming sites to
generate diagnostic banding patterns from prokaryotic
genomic DNA (25, 45). The REP-PCR technique is particu-
larly useful for investigations of bacterial symbiosis because
REP sequences have been found only in bacterial DNA; phage
and eukaryotes do not contain REP elements (25). By virtue of
these repetitive elements, symbiont DNA can be selectively
amplified from a mixed population of symbiont and host DNA
to allow analysis of bacterial population diversity. Our results
provide information on the extent of genetic variation among
the symbionts, as well as further evidence to support a hori-
zontal mode of symbiont acquisition among the vestimentif-
eran tubeworms.

MATERIALS AND METHODS

Sample collection. Vestimentiferans were collected with the aid of sub-
mersibles from several locations, including two sites in the Western Pacific
Ocean, four sites along the EPR, two sites in the Pacific Northwest, one site
along the Galapagos Rift (GR), two sites along the western coast of California
and Mexico, and two locations in the Gulf of Mexico (GOM) (Table 1). Samples
included in this study were chosen to represent the entire range of host vesti-
mentiferan distribution. Habitat types included hydrothermal vent sites with a
basaltic substrate, cold seep habitats with a sedimented bottom, and one sedi-
mented site associated with a whale carcass (Table 1). All samples were carried
to the surface in chilled seawater (0.5 to 2°C).

DNA extraction. The symbiont-containing trophosome tissue from each ves-
timentiferan host was aseptically removed, and a small portion of it was homog-
enized in 5 M guanidinium isothiocyanate. Prior to DNA extraction, 25 ml of a
20% Chelex 100 (47) solution was added to the homogenate and incubated for
1 h at 4°C. The samples were briefly spun to remove the Chelex 100. Total
bacterial DNA was extracted from 100 ml of guanidinium isothiocyanate homog-
enate using the IsoQuick DNA purification kit (Orca, Bothell, Wash.) according
to the manufacturer’s instructions and quantified spectrophotometrically. In
addition to symbiont DNA, host DNA from three different genera was extracted

from vestimentum tissue (non-symbiont-containing tissue) using the same ex-
traction protocol to serve as controls. A number of the DNA samples used in this
study (e.g., 18°S Riftia pachyptila, Guaymas Vent and Seep [GY-V and GY-S,
respectively] Escarpia spicata, whale E. spicata, Gorda Lamellibrachia sp., 21°N
Oasisia alvinae, and GY-V R. pachyptila) were prepared separately at Rutgers
University according to previously published protocols (20).

16S rRNA gene characterization. The methods used to PCR amplify, purify,
and sequence the 16S rRNA symbiont genes were as described in the work of
Feldman et al. (20). DNA sequence alignments were initially constructed using
PileUp and then optimized (minimizing overall alignment differences) by eye in
the SeqLab environment (Genetics Computing Group). Insertions and deletions
were eliminated from the alignment before phylogenetic trees were determined.
Phylogenetic trees for the symbiont 16S rRNA genes were computed using
fastDNAml and bootstrapped 100 times using fastDNAml boot (21, 34). For the
maximum likelihood analyses, operational taxonomic unit input order was ran-
domized and global rearrangements were performed at each bootstrap replica-
tion.

ITS region characterization. PCRs amplified the ITS region of the symbiont
ribosomal DNA (rDNA) using two ITS-specific primers, ITS16F-G1 (59-GAAG
TCGTAACAAGG-39) (27) and ITS23R-L1 (59-CAAGGCATCCACCGT-39)
(27). ITS16F-G1 is nested about 30 to 40 nucleotides upstream from the spacer
boundary in the 39 end of the 16S rRNA gene (positions 1491 to 1505, Esche-
richia coli 16S rRNA gene). ITS23R-L1 is nested in the 59 end of the 23S rRNA
gene, approximately 20 bases downstream from the spacer boundary (positions
21 to 35, E. coli 23S rRNA gene). PCR mixtures (50-ml total volume) contained
final concentrations of the following: 50 ng of symbiont DNA, 13 PCR buffer, 0.2
mM (each) deoxynucleoside triphosphates, 10 pmol of each primer, 1.5 mM
MgCl2, 5% (vol/vol) acetamide, and 1.25 U of Taq polymerase (Promega). PCR
conditions were as follows: 35 cycles, each consisting of denaturation at 92°C for
1 min, hybridization at 55°C for 2 min, and elongation at 72°C for 2 min with 5 s
added to each extension per cycle. A hot start (9) with denaturation at 95°C for
2 min was used at the beginning of the reaction to heighten reaction specificity.
In addition, acetamide was added to the PCR to encourage more efficient
amplification of GC-rich templates (38). All PCRs were performed on an MJ-
Minicycler (MJ Research, Inc., Watertown, Mass.).

Because our attempts to directly sequence the smaller ITS PCR amplicon
yielded poor results, amplified ITS regions were cloned to facilitate sequencing.
Amplification products were pooled from three separate PCRs and cloned di-
rectly using the TA cloning kit with the pCR-II or the pCR-2.1-TOPO cloning
vectors (Invitrogen, San Diego, Calif.) according to the manufacturer’s instruc-
tions. Plasmid preparations were made using a standard alkaline-lysis prepara-
tion (39). The sizes of the inserts were verified before sequencing by restriction
analysis. The plasmid DNA was further purified for sequencing using the Plasmid
MiniKit (Qiagen, Inc., Valencia, Calif.) according to the manufacturer’s instruc-
tions. Two clones from each amplified ITS region were cycle sequenced using the
Perkin-Elmer (Foster City, Calif.) ABI BigDye dye termination cycle sequencing
ready reaction kit with Ampli Taq DNA polymerase FS according to the man-
ufacturer’s instructions. Sequencing was performed on an ABI PRISM 310
genetic analyzer.

The ITS regions were bidirectionally sequenced and confirmed prior to their
alignment using the Sequence Navigator and AutoAssembler programs (Applied
Biosystems, Inc.). Only sequences that overlapped with 0% ambiguity were
included in the analysis. Final alignments were generated in the Genetic Data
Environment, version 3.2. Phylogenetic relationships were determined from

TABLE 1. Collection sites of vestimentiferan symbionts included in this studya

Host species Collection site Latitude; longitude Substrate, community type Depth (m) Reference

R. pachyptila 18°S, EPR (18S) 18°369S; 113°249W Basaltic, vent 2,637 20
R. pachyptila 9°N, EPR (9N) 9°499N; 104°179W Basaltic, vent 2,516 20
R. pachyptila Guaymas Basin vent (GY-V) 26°599N; 111°249W Basaltic, vent 2,016 20
R. pachyptila GR 0°489N; 86°139N Basaltic, vent 2,461 20
R. pachyptila 13°N, EPR (13N) 12°499N; 103°569W Basaltic, vent 2,630 This study
Oasisia alvinae 21°N, EPR (21N) 20°479N; 109°089W Basaltic, vent 2,577 20
T. jerichonana 13°N, EPR (13N) 12°499N; 103°569W Basaltic, vent 2,630 This study
T. jerichonana 9°N, EPR (9N) 9°499N; 104°179W Basaltic, vent 2,516 20
Ridgeia piscesae JDF 45°589N; 130°019W Basaltic, vent 1,550 This study
Lamellibrachia sp. Green Canyon, GOM 27°419N; 91°329W Sedimented, seep 700 5
Lamellibrachia sp. Gorda Ridge (Gorda) 42°459N; 126°429W Basaltic, vent 2,847 20
E. laminata WFE 26°029N; 84°559W Sedimented, seep 3,243 20
E. spicata Santa Catalina Basin (whale) 33°129N; 118°309W Sedimented, whale fall 1,240 20
E. spicata Guaymas Basin vent (GY-V) 26°599N; 111°249W Basaltic, vent 2,016 This study
E. spicata Guaymas Basin seep (GY-S) 26°599N; 111°249W Sedimented, seep 2,016 This study
L. columna Lau Basin, Hine Hina (Lau-Fiji) 22°329S; 176°439W Sedimented, seep 1,859 42
Undescribed species Nikko Seamount (Nikko) 23°059N; 142°209E Basaltic, vent? 433 This study

a See the work of Feldman et al. (20) for a map of the sample distribution.
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these aligned sequences using PHYLIP version 3.572 (22). A Kimura two-
parameter distance matrix was constructed, from which neighbor-joining trees
with 100 bootstrap replications were generated. A second distance matrix, based
on pairwise differences in the geographic distribution between samples, was
generated from latitude-longitude information for each sample site using Geo-
Dist version 3.01e, R package (32). A third distance matrix, based on pairwise
comparisons of the sample habitat types, was created by assigning “0” values to
pairs of samples that were taken from similar habitat types (both vent or both
seep) and “1” values to pairs of samples that were taken from different habitat
types. Mantel correlation tests were performed to compare ITS sequence dis-
tance with geographic and habitat distance (14, 33). Two- and three-way Mantel
tests were performed using different combinations of the three distance matrices
to assess whether ITS genetic distance significantly correlates with the geo-
graphic distances between endosymbiont collection sites or their habitat types
(41). These Mantel tests were performed using the R package (32).

REP elements. REP sequences were amplified from each of the vestimentif-
eran symbionts with PCR using two universal REP primers, REPIR-I (59-III-
ICGICGICATCIGGC-39) (45) and REP2-I (59-ICGICTTATCIGGCCTAC-39)
(44). Each 25-ml REP-PCR mixture contained 50 ng of symbiont or host DNA
and final concentrations of 13 Gitschier buffer [16.6 mM (NH4)2SO4, 67 mM
Tris-HCl, 6.7 mM MgCl2, 6.7 mM EDTA, 30 mM b-mercaptoethanol (29)], 160
mg of DNA-grade bovine serum albumin per ml, 10% dimethyl sulfoxide, 1.25
mM (each) four deoxynucleoside triphosphates, 10 pmol of each REP primer,
and 2 U of Taq polymerase (Gibco). One cycle of 95°C for 7 min was performed
to denature the genomic DNA, followed by 30 cycles of 94°C for 1 min, 44°C for
1 min, and 65°C for 8 min, and a final extension at 65°C for 15 min. PCRs were
performed with an MJ-Minicycler (MJ Research, Inc.). Reaction products (7.5
ml) were analyzed via agarose gel electrophoresis.

A digital image of each gel was captured and stored using the Alpha Imager
2000 Documentation and Analysis System (AlphaInnotech Corp., San Leandro,
Calif.). Each gel image was analyzed using the software package GelCompar
(version 4; Applied Maths, Kortrijk, Belgium). This software was used to nor-
malize the molecular weight of each of the bands in each gel to all of the others
based on the inclusion of the same set of molecular weight markers on each gel.
Once normalized, all of the fingerprints in the database were compared to each
other using an unweighted-pair-group-method-with-averages clustering algo-
rithm and Jaccard coefficient.

Nucleotide sequence accession numbers. GenBank accession numbers for the
new ITS sequences reported in this paper are as follows: AF076795, Ridgeia
piscesae endosymbiont, Juan de Fuca Ridge (JDF); AF076796, Escarpia laminata

endosymbiont, West Florida Escarpment (WFE); AF076797, Lamellibrachia sp.
endosymbiont, GOM-10; AF076798, E. spicata endosymbiont, GY-S; AF076799,
R. pachyptila endosymbiont, GY-V; AF076800, Tevnia jerichonana endosymbi-
ont, 9N; AF076801, R. pachyptila endosymbiont, 9N; AF076802, T. jerichonana
endosymbiont, 13N; AF076803, R. pachyptila endosymbiont, 13N; AF076804,
Lamellibrachia sp. endosymbiont, Gorda; AF076805, R. pachyptila endosymbi-
ont, GR; AF076806, R. pachyptila endosymbiont, 18S; AF076807, O. alvinae
endosymbiont, 21N; AF076808, E. spicata endosymbiont, whale; AF076809, un-
described species endosymbiont, Nikko Seamount; AF076810, L. columna en-
dosymbiont, Lau-Fiji; AF076811, Lamellibrachia sp. endosymbiont, GOM-12;
AF076812, E. spicata endosymbiont, GY-V; AF076813, Lucina floridana endo-
symbiont. Accession numbers for the three 16S rRNA sequences generated for
this study are as follows: AF165909, E. spicata endosymbiont, GY-V; AF165907,
undescribed species endosymbiont, Nikko Seamount; and AF165908, E. spicata
endosymbiont, GY-S.

RESULTS AND DISCUSSION

16S rDNA sequence variation among vestimentiferan endo-
symbionts. In order to maintain a comparable data set, many
of the endosymbiont DNA samples used in our ITS and REP-
PCR analyses are the same DNA samples used in the previous
16S rDNA study of geographically distinct endosymbionts (20).
Our study also includes additional samples to expand the rep-
resentation of symbiont distribution. In concordance with our
expanded data set, a new 16S rDNA phylogenetic tree was
generated to include three of the endosymbionts that were
added: GY-V E. spicata, GY-S E. spicata, and the undescribed
species from the Nikko Seamount (Fig. 1A). In this new anal-
ysis of 16S rDNA sequences, the symbionts continue to cluster
into two main groups: group I includes all of the symbionts
from seep- or sediment-dwelling host organisms, while group
II includes all of the symbionts from vent-dwelling host fauna.
These relationships are in accordance with our previous find-
ings (20). Interestingly, the difference between vent and seep

FIG. 1. (A) Dendrogram based on 16S rDNA sequences of vestimentiferan symbionts. Phylogenetic relationships were computed using fastDNAml and boot-
strapped 100 times using fastDNAml boot (21, 34). For the maximum likelihood analyses, operational taxonomic unit input order was randomized and global
rearrangements were performed at each bootstrap replication. Two major groups of endosymbionts are indicated. Scale bar represents 10% sequence dissimilarity.
Reference sequences used in this 16S study were obtained from the GenBank database and include the following accession numbers: L25712, Codakia costata symbiont;
L25711, Anodontia phillipiana symbiont; M99446, Calyptogena magnifica symbiont; L25710, Calyptogena pacifica symbiont; L25718 and L25719, Calyptogena elongata
symbiont; M90662, Thiobacillus hydrothermalis; V00348, E. coli; U77478, 9N and 18S R. pachyptila endosymbiont and 9N T. jerichonana endosymbiont; U77479, GOM
Lamellibrachia sp. endosymbiont and WFE E. laminata endosymbiont; U77480, JDF Ridgeia piscesae endosymbiont and GY-V and GR R. pachyptila endosymbiont;
U77481, Lau-Fiji L. columna endosymbiont; U77482, whale E. spicata endosymbiont. (B) Dendrogram showing the relationships of vestimentiferan symbionts based
on ITS sequences. The tree was rooted with the symbiont from a marine bivalve, L. floridana, as an outgroup. The tree was constructed using the neighbor-joining
method with 100 bootstrap replicates. Each number on a branch indicates the number of times (out of 100) that the node was supported by the bootstrap analysis. Only
bootstrap values of $50% are reported. Two major clusters of endosymbionts are indicated. Scale bar represents 10% sequence dissimilarity.
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symbionts is maintained between symbionts from the same
host, E. spicata, collected from vent (GY-V) and seep (GY-S)
habitats at a single site in Guaymas Basin. Likewise, symbionts
from two different vestimentiferan hosts are closely related
when collected from the same habitat type (e.g., 9N R. pachy-
ptila and T. jerichonana symbionts, both from vent habitats).

ITS sequence variation among vestimentiferan symbionts.
ITS amplifications of vestimentiferan symbionts were generally
550 bp in length, although some individuals yielded a second,
larger PCR product of roughly 800 bp in length (data not
shown). The larger amplicon did not match any ITS sequences
in the database, and we found that its intensity in the total PCR
product was reduced by the use of higher annealing tempera-
tures. For these reasons, we believe that the larger product
represented an artifact of the PCR rather than rRNA operon
heterogeneity. To separate these two distinct amplicons, we
cloned the ITS PCR amplification products and used only the
smaller amplicon from each symbiont for sequence analysis. As
in many bacteria, all of the endosymbiont ITS regions con-
tained putative sequences for the tRNA genes for alanine and
isoleucine (Fig. 2). Five of the symbionts contained prominent
insertion sequences (approximately base position 312 in ITS
region) that totaled approximately 50 bp (Fig. 2).

ITS sequences of endosymbionts collected from several ves-
timentiferan host genera were compared phylogenetically us-
ing the corresponding ITS sequence of the symbiont of the
lucinid bivalve L. floridana as an outgroup. A similarity matrix
of ITS sequences was constructed based upon a Kimura two-
parameter distance estimate. Genetic distances were calcu-
lated based on 500 bp of aligned sequences after the nucleotide
insertions and deletions were removed. The sequences were

surprisingly conserved overall, with percent sequence similarity
ranging from 87.0 to 100% (data not shown). The symbionts
from R. pachyptila hosts collected from Guaymas Basin, 9°N,
and 18°S displayed 100% sequence similarity.

Symbiont relationships were depicted as a cladogram based
upon ITS sequence diversity (Fig. 1B). Because of the high
similarity among the ITS sequences, many of the bootstrap
values at branch points in the neighbor-joining analysis were
low or insignificant. Only bootstrap values of $50% were re-
ported. The ITS cladogram showed a prominent break within
the symbionts: group I included the symbionts of E. spicata
from the whale carcass, L. columna from the Lau-Fiji basin,
the undescribed species from a vent site at the Nikko Sea-
mount, one of the two Lamellibrachia spp. collected from a
seep site in the GOM (GOM-12), and E. laminata from the
seep site at Guaymas Basin; group II included the rest of the
symbionts (Fig. 1B). Apart from differing in sequence from the
members of group II, the symbionts in group I contained
prominent insertion sequences that totaled approximately 50
bp (Fig. 2). The sequences of these insertions were nearly
identical in all of the symbionts in which they were found.
Groups I and II in the 16S rDNA cladogram (Fig. 1A) corre-
late well with groups I and II in the ITS cladogram (Fig. 1B),
with one exception: E. laminata symbiont, WFE, appears in
group I according to its 16S rDNA sequence and in group II
according to its ITS sequence (Fig. 1).

To determine if there was a significant correlation between
ITS sequence diversity and either geography or habitat type,
we performed two- and three-way Mantel tests to compare
distance matrices generated from pairwise differences between
ITS sequences, geographic distances, or habitat types. The

FIG. 2. Alignment of a portion of the ITS region (bp 240 to 480). Putative sequences for the tRNA genes for alanine and isoleucine are indicated by the boxes.
A 50-bp insertion that is present in five of the sequences is highlighted by boldface. Identical bases are indicated by dots, while gaps in the sequence alignment
corresponding to insertions or deletions are indicated with dashes. Lamell., Lamellibrachia.
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results of these Mantel tests are shown in Table 2. Despite the
remarkable similarity among the ITS sequences, the genetic
distances among ITS regions correlate significantly with geo-
graphic distances. Although none of the correlations were par-
ticularly strong (r # 20.334 for all tests), P values from two
different Mantel tests indicated that ITS sequence similarity
and geography were significantly correlated (P 5 0.0349, test 3;
P 5 0.0480, test 4). In contrast, P values for a two-way Mantel
test of ITS sequence similarity versus habitat type alone (test 1)
or a three-way test versus habitat type with geography factored
out (test 5) were not statistically significant (P 5 0.146 and
0.102, respectively). Thus, ITS sequence similarity was signifi-
cantly correlated with broad-scale endosymbiont geography
(P # 0.05) but not significantly correlated with habitat type. In
light of the fact that the ITS sequences for 9°N, 18°S, and
Guaymas R. pachyptila were identical, our results suggest that
the ITS region is variable enough to show broad-scale biogeo-
graphic variation but is not variable enough to distinguish
among symbionts located along the same ridge axis. These
results are in contrast to the results of Feldman et al. (20) and
the new analysis of 16S rDNA relationships presented in this
study, which suggest that symbiont sequence distances corre-
late with habitat type (basaltic, vent versus sedimented, seep
substrates). Although our data suggest that the geographic
distribution of the hosts may be a dominant influence in de-
termining genetic variation of the endosymbionts, it is clear
that several factors affect endosymbiont diversity.

Historically, the ITS region has been useful for discriminat-
ing among strains of several bacterial species, including a hy-
perthermophilic archaeon (11), Rhizobium sp. (30), Bifido-
bacterium sp. (31), infectious Pseudomonas sp. (43), and
Trichodesmium sp. (49). In the present study, we found that the
ITS region was much more conserved than expected. Although
the ITS region is usually very informative at the subspecies
and/or strain level (11, 30, 31, 49), it has been unreliable in
some cases. In studies of the Mycobacterium tuberculosis com-
plex (23) and with several Listeria isolates (15), the ITS region
failed to differentiate between species and/or strains.

REP-PCR fingerprints of the vestimentiferan symbionts.
The REP-PCR technique is particularly well suited for inves-
tigations of bacterial symbiosis, in that it allows investigators to
survey the symbiont genome in the presence of host DNA
because the REP priming sites are exclusively bacterial (25).
To confirm that REP sequences were not present in the ge-
nomes of the vestimentiferan hosts, we performed REP-PCR
amplifications on DNA that was aseptically acquired from ves-
timentum (non-symbiont-containing) tissue from three differ-
ent host genera (Escarpia, Riftia, and Tevnia). Most of these
samples failed to amplify at all (data not shown). The excep-
tion was E. laminata, which produced a single band that did not

correspond with any of the bands seen in the REP fingerprint
of its endosymbiont.

Fingerprint patterns of the vestimentiferan endosymbiont
DNA displayed remarkable variation (Fig. 3). Relationships
based upon the number of shared bands among the fingerprint
patterns were compared using GelCompar software and de-
picted as a cladogram with a corresponding, computer-gener-
ated gel image (Fig. 4). All of the symbionts included in the
REP analysis displayed unique fingerprints, with the exception
of 9°N R. pachyptila, and GR R. pachyptila, which exhibited
indistinguishable patterns (Fig. 3 and 4). The REP analysis
seems to divide the symbionts into four distinct groups, or
clades (Fig. 4). Group I includes both Lamellibrachia symbi-
onts from the GOM and the symbiont from Ridgeia piscesae
from the JDF. Group II includes the R. pachyptila symbionts
and the symbiont from T. jerichonana. Group III includes all of
the Escarpia symbionts, from both E. spicata and E. laminata.
Group IV includes the endosymbionts from the undescribed
species at Nikko Seamount and L. columna from the Lau-Fiji
Basin, two distantly located sites in the western Pacific Ocean.

Upon closer examination, the REP analysis seems to reflect
three different influences on endosymbiont differentiation:
host genus, bottom or substrate type, and geography. Host
genus seems to be the primary source of differentiation, as
most of the clades break up into distinct groupings of conge-
ners. The only clade where this breaks down is group II, which
includes symbionts from Riftia and Tevnia host genera. This
clade, however, supports previous studies using DNA-DNA
hybridization and in situ hybridization that suggest that the
endosymbionts of Riftia and Tevnia are closely related (5, 17).

The secondary influences for symbiont genetic differentia-
tion seem to be geographic location and substrate type. Within
clades of congeners, it appears that symbionts differ based
upon where they are collected and/or the habitat type (basaltic
or sedimented). In group II, all of the R. pachyptila symbionts
collected from the hosts at northern EPR sites (i.e. GY-V, 9N,
and GR) are less closely related to the R. pachyptila symbiont
collected from a site 18°S along the southern EPR. Within the
Escarpia symbiont clade (group III), both geographic location
and substrate type seem to be at work: symbionts collected
from hosts at the whale fall in the Santa Catalina Basin
(whale), Guaymas Basin seep (GY-S), and WFE, all soft-bot-

FIG. 3. Digital image of the REP-PCR fingerprint patterns of the vestimen-
tiferan symbionts. Shown are the REP-PCR products generated by using chro-
mosomal DNA of endosymbionts extracted from the following vestimentiferans:
R. pachyptila, GY-V (lane 1); R. pachyptila, 9N (lane 2); R. pachyptila, GR (lane
3); R. pachyptila, 18S (lane 4); Ridgeia piscesae, JDF (lane 5); T. jerichonana, 9N
(lane 6); undescribed sp., Nikko Seamount (lane 7); L. columna, Lau-Fiji (lane
8); E. spicata, whale (lane 9); E. spicata, GY-V (lane 10); E. spicata, GY-S (lane
11); Lamellibrachia sp., GOM-10 (lane 12); E. laminata, WFE (lane 13); Lamel-
librachia sp., GOM-11 (lane 14). Lanes H, Hi Low DNA marker; lane M, 1-kb
DNA ladder. Molecular sizes (base pairs) of selected bands in the DNA markers
are indicated. The photo represents a composite of a larger gel that was altered
in Adobe Photoshop version 5.0 to include only the individuals presented in this
study.

TABLE 2. Mantel tests of correlation among geographic, habitat,
and ITS sequence similarity matrices for vestimentiferan symbiontsa

Test Matrix A Matrix B Conditional
matrix C r t P

Two-way
1 ITS sim Habitat 20.133 21.402 0.1459
2 Geography Habitat 0.006 0.053 0.4555
3 ITS sim Geography 20.332 22.291 0.0349

Three-way
4 Geography ITS sim Habitat 20.334 22.349 0.0480
5 Habitat ITS sim Geography 20.139 21.508 0.1019

a sim, similarity.
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tom substrate types, clade together and group away from the
symbionts collected from the Guaymas Basin vent (GY-V).
Within the soft-bottom grouping of Escarpia symbionts, it ap-
pears that the symbionts from California and Guaymas (both
on the western coast of North America) group away from the
symbiont from Florida (on the eastern coast). The symbionts
from the Nikko Seamount and Lau-Fiji Basin are clearly dif-
ferent from the rest of the symbionts, presumably because they
are so geographically removed from the rest of the collection
sites.

REP-PCR has been useful for genomic fingerprinting of
various strains of bacteria, including Actinobacillus (1), Rhizo-
bium (10, 30), Legionella (24), Streptococcus (44), Bacillus (26),
and Citrobacter diversus (51) strains. In the present study, we
found that the REP-PCR fingerprint analysis was sufficiently
fine-scaled to reveal some interesting strain-level genetic vari-
ation among vestimentiferan symbionts. Presumably, this is
because the REP analysis targets the whole genome, rather
than a specific, relatively conservative region of the DNA. This
physically maximizes the probability of finding strain-level vari-
ation. It should be noted that the symbiont of O. alvinae was
not included in the REP analysis, because a reliable REP-PCR
amplification and subsequent fingerprint pattern were not ob-
tainable with this DNA. When the DNA was run on an agarose
gel, it appeared sheared, and although it was sufficiently large
enough for performance of the 550-bp ITS amplification, there
was insufficient high-molecular-weight genomic DNA to sup-
port the REP analysis.

Implications for symbiont relatedness and acquisition. Pre-
vious studies have suggested that vestimentiferans acquire
their symbionts through ingestion of free-living bacteria upon
larval settlement (28, 42). If this mechanism alone is employed,
one would expect that symbionts from two different vestimen-
tiferan host species living at the same location would be iden-
tical or related more closely to each other than they are to
other endosymbionts collected from distant vent sites. This, in
fact, was not the case, as symbionts from 9°N T. jerichonana
and 9°N R. pachyptila (both collected from the same rock) did
not display identical ITS sequences or REP-PCR fingerprints.
Instead, the symbionts grouped according to their respective
host species as revealed through comparisons of shared bands
in their REP-PCR fingerprints.

One explanation for this is that larvae could acquire their
symbionts prior to attachment, either from a different substrate

than where they eventually colonize or from the water column.
This could enable two vestimentiferans that reside in the same
site to harbor different symbionts. Alternatively, symbiont ac-
quisition may be related to ecological succession. T. jericho-
nana is the first colonizer of new hydrothermal vent fields, in
areas of the most intense diffuse flow (40). Presumably, this is
because T. jerichonana is more tolerant (than R. pachyptila) of
the high temperatures and elevated concentrations of H2S that
are present in newly formed vent sites. It is only after T. jeri-
chonana has become established and the levels of reduced
chemicals have attenuated that R. pachyptila begins to colonize
a new hydrothermal vent site (40). The T. jerichonana and
R. pachyptila hosts may simply acquire a different subset of a
free-living chemoautotrophic community due to temporal and/
or spatial consequences of ecological succession.

Specific host recognition mechanisms may exist that allow
certain strains of endosymbiont bacteria to survive in specific
vestimentiferan hosts. Although these mechanisms have not
been demonstrated in vestimentiferans, they could explain how
two different hosts living on the same rock could harbor dif-
ferent symbionts. Alternatively, the larvae may acquire bacte-
ria that have been released from congeners residing at the site
of larval settlement, potentially through host decomposition.
These mechanisms might yield REP-PCR fingerprint patterns
that imply close relationships between endosymbionts of the
same host genus. Because only one individual from each ves-
timentiferan genus was sampled from most of the locations, we
cannot determine the extent of ITS sequence variation among
endosymbionts at each site.

The extent of vestimentiferan symbiont relatedness and the
host transmission mechanisms used to maintain these symbio-
ses have remained ongoing questions. The results presented
here demonstrate the existence of significant strain-level vari-
ation between endosymbionts of different vestimentiferan
hosts collected from geographically separated areas. Further
work to pinpoint the stage during vestimentiferan development
when the symbiosis is first established will shed light on sym-
biont transmission and help to explain the genetic diversity
among symbiont populations.
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