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Abstract

DNA sequencing technology has proven very valuable for analysing the microbiota

of poorly accessible ecosystems such as hydrothermal vents. Using a combination

of amplicon and shotgun sequencing of small-subunit rRNA and its gene, we

examined the composition and diversity of microbial communities from the

recently discovered Jan Mayen vent field, located on Mohn’s Ridge in the

Norwegian-Greenland Sea. The communities were dominated by the epsilonpro-

teobacterial genera Sulfurimonas and Sulfurovum. These are mesophiles involved

in sulphur metabolism and typically found in vent fluid mixing zones. Composi-

tion and diversity predictions differed systematically between extracted DNA and

RNA samples as well as between amplicon and shotgun sequencing. These

differences were more substantial than those between two biological replicates.

Amplicon vs. shotgun sequencing differences could be explained to a large extent

by bias introduced during PCR, caused by preferential primer–template annealing,

while DNA vs. RNA differences were thought to be caused by differences between

the activity levels of taxa. Further, predicted diversity from RNA samples was

consistently lower than that from DNA. In summary, this study illustrates how

different methods can provide complementary ecological insights.

Introduction

Deep-sea hydrothermal vents offer a wide range of habitats for

microorganisms, with rich varieties of environmental condi-

tions and steep physical and chemical gradients where hot

vent fluids mix with cold oxygenated seawater (Reysenbach &

Shock, 2002). In these environments, several different ecolo-

gical niches for microorganisms exist, varying from high-

temperature chimneys (black and white smokers), warm water

vents close to chimneys and diffuse seepages from fissures

underlying sediments more distant from the chimneys. From

all these vents systems, emission of various reduced gases and

solutes can serve as the primary sources of energy for

specialized microbial populations, such as those involved in

the sulphur cycle. Observations of dense, white suspensions of

cells suggest a substantial microbial community in these

sediments. A number of studies have been carried out using

molecular and genomic techniques to analyse these complex

microbial communities (reviewed in, e.g. Reysenbach &

Shock, 2002; Nakagawa & Takai, 2008) and contributed

towards a better understanding of their ecology.

Recent developments in high-throughput sequencing

technology has facilitated the collection of enormous

amounts of sequence data and helped to reveal an even

greater microbial diversity than previously recognized from

many environments including hydrothermal vents (Sogin

et al., 2006; Huber et al., 2007, 2010; Brazelton et al., 2010).

However, even new technologies such as pyrosequencing are

limited in their ability to reveal the complexity of microbial

communities. Direct observation of the activities of micro-

organisms is difficult due to the small scale. Therefore, using

sequencing of extracted nucleic acid to explore a complex

microbial community can be likened to trying to under-

stand the world by observing shadows on the wall of a cave,

like the prisoners in Plato’s Allegory of the Cave (Plato &

Cornford, 1941). Sequence data often constitute a biased

and incomplete representation of the microbiota in an
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ecosystem and are challenging to interpret. Therefore, care-

ful choice and understanding of sequencing strategies and

methods is essential.

Pyrosequencing of PCR amplicons (or ‘tags’) from the

small-subunit (SSU) rRNA gene is an increasingly common

and cost-efficient technique for studying community com-

position and diversity (Tringe & Hugenholtz, 2008). This

method can yield orders of magnitude more sequence data

than Sanger sequencing of clone libraries for the same cost

(Engelbrektson et al., 2010). However, like the traditional

clone library approach, the SSU region targeted (Liu et al.,

2008; Claesson et al., 2009), primer mismatch (Bru et al.,

2008; Isenbarger et al., 2008) and PCR conditions (Suzuki &

Giovannoni, 1996; Sipos et al., 2007) may bias the results.

Further, there are no universal primers for targeting all three

domains of life.

Sequencing of SSU rRNA amplicons from reverse-tran-

scribed RNA (cDNA) is better suited for estimating the

current in situ activity of a community, because cellular

rRNA concentration is generally well correlated with growth

rate and activity (Poulsen et al., 1993; Bremer & Dennis,

1996). However, reverse transcription also introduces bias

and may have lower reproducibility than PCR (Ståhlberg

et al., 2004). Amplicons from the SSU rRNA gene can

instead provide broader insights into the presence of organ-

isms within the community, because dormant and inactive

cells are also targeted. A drawback is the inclusion of DNA

from dead cells (Luna et al., 2002). A promising holistic

method that can provide both functional information and

community composition data from all three domains of life

simultaneously is the ‘Double RNA Approach’ (Urich et al.,

2008), where random hexamer primed reverse transcription

of RNA is used and the resulting cDNA shotgun is

sequenced. As opposed to many other metatranscriptomic

studies, the rRNA molecules are retained rather than en-

riching for mRNA sequences. Thus, this method enables

taxonomical profiling at the expense of functional coverage.

Importantly, it also avoids the potential PCR and primer

bias introduced with cDNA amplicon generation.

In 2005, the world’s northernmost active vent fields at that

time were discovered, located on the ultraslow spreading Mohn’s

Ridge, north of the island Jan Mayen in the Norwegian-

Greenland Sea. The fields lack the typical macrofauna associated

with vent fields to the south along the Mid-Atlantic Ridge

(Pedersen et al., 2010; Schander et al., 2010). Large sediment

areas were covered with white microbial mats, sustained by

diffuse venting of hydrothermal fluids. The aim of this study

was to investigate the community composition and diversity of

these microbial mats, using a combination of different sequen-

cing methods. In addition, we investigated how the choice of the

community profiling method can influence predicted taxono-

mical composition and diversity estimates. From two samples

from similar microbial mats, we extracted both DNA and RNA,

and then prepared and pyrosequenced PCR amplicons from

both extractions. In addition, shotgun pyrosequencing was

carried out both from DNA and cDNA. Using these com-

plementary techniques and marker molecules, the study was

designed to obtain a holistic picture of the communities and

any differences between them. In addition, this allowed us

to analyse whether any systematic bias was introduced

during PCR or otherwise, between amplicon sequencing

and shotgun sequencing.

Materials and methods

Study site, samples and experimental design

Two sediment samples from white microbial mats were

retrieved from the Trollveggen vent field (71117.88,

� 5146.34) at a depth of 564 m using a remotely operated

vehicle, during the H2DEEP cruise, 25 July 2008. Two different

sites from apparently similar habitats were sampled. One site

was sampled using a slurping device [sample 1 (S1)], where the

sample materials were collected in a closed container and the

second sediment sample was collected using a metal box with a

connected shovel [sample 2 (S2)]. The sediment sample was

visibly stratified with a white top layer and underlying grey

layers. Several kilograms of this sample were transported

through the water column and on board the ship for immedi-

ate processing. The top layer including the upper 3–5 mm of

the grey area was withdrawn using sterile spatulas. The slurping

device was used in such a manner that roughly the same layers

were collected. Again, the white layers and the surrounding

grey material were sampled using spatulas. Samples were

directly transferred into bead-beating tubes (MP Biomedicals),

flash-frozen in liquid nitrogen and stored at � 80 1C. The time

from sampling until arrival onboard was approximately 60 min

and the processing was another 30 min.

From the two biological replicates retrieved (S1 and S2),

three different nucleic acid extractions were carried out and

thereafter treated using different experimental schemes

according to Fig. 1.

Nucleic acid extraction and cDNA synthesis

Nucleic acids (DNA and RNA) were simultaneously

extracted from each of the two samples using a phenol:

chloroform protocol and mechanical shearing (Urich et al.,

2008). To account for differences in extraction efficiencies

between easily and difficultly lysed cells, bead beating was

performed at two different speeds in the Fast-Prep instru-

ment (4 and 5 ms�1). The triplicate extractions at both

conditions were later on merged into one nucleic acid pool

per sample. After DNase treatment and RNA purification

using MegaClear columns (Ambion), the success of the

DNase treatment was verified by PCR with 16S rRNA gene

primers specific for bacteria and archaea. Subsequently, total
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RNA was subjected to double-stranded cDNA synthesis as

described previously in Urich et al. (2008).

Preparation of high-molecular-weight DNA
(HMW-DNA)

Extraction of HMW-DNA was carried out from S2, using the

protocol described by Zhou et al. (1996). Five grams (wet

weight) of sediment was mixed with 13.5 mL DNA extraction

buffer with added Proteinase K and purified using phenol:

chloroform. The extracted DNA was analysed on a 0.7%

agarose gel and then on Nanodrop to measure its quality and

concentration (absorption spectra, A260/A280 and A260/A230).

Shotgun sequencing

Shotgun sequencing of the HMW-DNA and the two cDNA

preparations was performed on a GS FLX pyrosequencer

(Margulies et al., 2005) using Titanium chemistry at the

Norwegian High-throughput Sequencing Centre located at

the University of Oslo, Norway. All sequencing reads shorter

than 150 bp were removed as well as those containing

degenerate bases (‘Ns’) or an average quality score below 25.

Sequencing of 16S amplicons

The V5-V6 region of 16S rRNA gene was targeted and

amplified for all cDNA and DNA libraries prepared using

the ‘universal’ forward primer Uni787F (ATTAGATACCC

NGGTAG; Roesch et al., 2007) and the ‘universal’ reverse

primer 1391R (ACGGGCGGTGWGTRC; modified from

Lane et al., 1985). DNA and cDNA from each sample

(10 ng) was PCR amplified in triplicates using the above-

mentioned primers under the following thermal conditions:

95 1C/15 min, then 20–30 cycles of 94 1C for 45 s, 53 1C for

45 s and 72 1C for 1 min, followed by 72 1C for 7 min before

cooling at 4 1C. A new round of PCR was performed to link

the A and B pyrosequencing adaptors (454 Life Sciences/

Roche) and the unique barcodes to the amplicons as

described by Hamady et al. (2008). The resulting amplicons

were sequenced using multiplex GS FLX pyrosequencing.

No protocol using Titanium chemistry was available for

amplicon sequencing at this time, but became so later

during the study. To validate that this generated similar

results, a separate PCR and Titanium pyrosequencing was

performed following the same PCR protocol, except using

Fig. 1. Overview of the experimental design and the resulting datasets. The two samples are represented as circles. Total community DNA and RNA was

extracted from both samples and a separate DNA extraction was made from Sample 2 to prepare a high-molecular-weight-DNA library (‘HMW DNA’).

RNA isolates were reverse transcribed into cDNA. Shotgun and amplicon sequencing of these produced nine datasets of sequence reads. Dataset types

and comparisons made are indicated according to the legend. The amplification using a unique reverse primer (1492R) is indicated with a star.
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1492R (GNTACCTTGTTACGACTT; Roesch et al., 2007) as

a reverse primer.

Filtering and removal of noise and chimeras
from 16S amplicon sequences

Filtering and noise removal of 16S amplicon sequences was

carried out using AMPLICONNOISE (Quince et al., 2011). This

method corrects the noise and errors introduced during

pyrosequencing and PCR. Thus, a new set of denoised and

chimera-filtered sequences were generated, each with a set of

associated original sequence reads. Barcode and primer

sequences were removed before further analysis such as

taxonomic classification and clustering.

Preparation of a SSU rRNA reference database

A 16S rRNA gene reference sequence database was prepared

from the Silva SSURef release 100 (Pruesse et al., 2007; http://

www.arb-silva.de/documentation/background/release-100).

Using the ARB software package, we reviewed the SSURef

alignment and removed all sequences with a pintail score

below 75, an alignment quality score (align_qual_slv) below

75 or a length below 1200 bp. For most bacterial taxons,

the Silva Taxonomy was used. In addition, we manu-

ally reviewed and edited taxonomy assignments for the

Epsilonproteobacteria, Acidobacteria, Chloroflexi and the

Archaea. Eukaryotic sequences including mitochondrial and

plastid sequences were analysed and chosen for the database

based on taxonomic affiliation in the NCBI taxonomy and a

comparatively high taxonomic resolution. The database con-

sisted of 341 683 sequences at the time of analysis.

All sequences were exported in FASTA format using a posi-

tional filter (including positions between 1000 and 43 284 of

the ARB alignment) along with a tab-separated text file

describing the accession number, Silva taxonomy placement

and NCBI Taxonomy ID for each retained SSURef sequence.

Based on the NDS file, configuration files for MEGAN (Huson

et al., 2007) were prepared (including a taxonomy tree in

Newick format). The modified SSURef database is available

for download from http://www.bioinfo.no/services/commu

nity-profiling and work is underway to release the database

along with an rRNA version of the MEGAN software (Huson

et al., 2007).

Taxonomic classification and grouping

All filtered, denoised and chimera-filtered sequences were

aligned to the modified SSURef database using BLASTN

(default parameters) as implemented in the NCBI standa-

lone BLAST suite. All sequences with a bit-score above 150 to

any database reference sequence were classified as SSU

rRNA. The BLAST result was analysed using MEGAN version

3.7 (Huson et al., 2007), and sequences were assigned to taxa

in the modified Silva Taxonomy described above (default

parameters except Min Support = 1 and Min Score = 150).

MEGAN assignments were then exported and, for amplicon

sequences, also weighted according to the original number

of associated reads. The abundance counts of each taxon at

different ranks were calculated using these weighed assign-

ments. The relative abundance for eukaryotic taxa was

defined as the number of reads assigned to the eukaryotic

taxon divided by the total prokaryotic reads in the dataset.

Operational taxonomic units (OTU) clustering,
richness estimates (Chao1) and rarefaction
analysis

All SSU sequences derived from amplicon sequencing were

clustered into OTUs using maximum linkage clustering, based

on pairwise distances generated using the exact pairwise

Needleman–Wunsch algorithm, as described in Quince et al.

(2011). A 3% distance cutoff was used to define OTUs.

Chao1 estimates of minimum diversity (Chao, 1987) and

Simpson’s index of diversity (1-D) were calculated, using a

custom Python script. Rarefaction curves were calculated

using the program E RAREFACTION distributed with AMPLICON-

NOISE (Quince et al., 2011).

Comparison of taxon abundances across
datasets

The relative abundance of each taxon was compared across

datasets using a custom Python script. For each taxon in

each pairwise comparison, we calculated the ratio of pro-

portions (RP), the odds ratio and the difference between

proportions, as recommended in Parks & Beiko (2010).

Where the relative abundance of a taxon is p1 in the first

and p2 in the second dataset, RP is defined as p1/p2.

As recommended in Parks & Beiko (2010), Fisher’s exact

test was used to determine the significance of the difference

in observed relative abundance, or more precisely, the

probability of the null hypothesis that the observed number

of reads assigned to the taxon was drawn from the same

underlying distribution. Two-tailed tests were performed

using the Python package FISHER v0.1.4 (Tang & Pedersen,

2010). P-values were corrected for multiple hypotheses

testing using Bonferroni correction. All taxa with corrected

P-values o 0.05 were considered observed at significantly

different relative abundance between datasets. Eukaryotes

were excluded in the comparisons.

Linear regression, hierarchical clustering of datasets and

other statistical analyses were carried out using the R

programming language. Nonmetric multidimensional scal-

ing (NMDS) and calculation of dataset dissimilarity indices

were carried out using the functions ‘metaMDS’ and ‘veg-

dist’ in the R package VEGAN (Oksanen et al., 2010).
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Mismatches and base at degenerate primer
positions

A number of factors were thought to influence primer

binding in our samples and thus bias PCR efficiency. Using

the shotgun sequence data, we studied the following factors:

share of reads with mismatches to the forward (MMF) and

reverse primer (MMR); and the share of reads with a G or a

C in the degenerate base position of the forward (GCF)- and

reverse primer (GCR)-binding sites. These factors were

determined for each taxon, individually in each of the three

shotgun datasets.

Using a custom Python script, all variants of the degen-

erate primer sequence were determined for the three

primers. In addition, all transformations of the variants

whose reverse complement has exactly one or two mis-

matches to one of the correct primer sequence variants were

calculated and annotated with mismatch positions (see

file primer_mismatch.fasta). The resulting set of sequences

was aligned to each taxon dataset in each shotgun dataset

using BLASTN (only full-length identical matches were

retained). Values of GCF and GCR were estimated as the

share of matches to versions with a G or a C in the

degenerate position, while values of MMF and MMR were

estimated as the share of matches to mismatch-transformed

sequences.

Data submission

Pyrosequencing flowgrams (SFF files) containing only rRNA

reads were submitted to the NCBI Sequence Read Archive

with the study accession number SRP004929.

Results

Community composition

During initial filtering, 22% of all reads were removed and in

total SSU rRNA sequences representing 199 736 sequence reads

were obtained. Table 1 provides an overview of the datasets.

The vast majority of reads from the metagenomic dataset

(shotgun DNA) as well as mRNA reads from the metatran-

scriptomic datasets (shotgun cDNA) do not represent SSU

rRNA and were not analysed here, but instead in a separate

functional study of the community (T. Urich, A. Lanzén,

R. Stokke, R.B. Pedersen, I.H. Thorseth, C. Schleper, I.H. Steen

& L. Øvreås, unpublished data). The number of SSU rRNA

reads ranged from 565 to 85 893 in shotgun sequencing

datasets and from 3980 to 8903 in amplicon datasets.

In total, 96% of all SSU rRNA reads could be assigned at

the class rank (Supporting Information, Table S2). Relative

taxon abundances and OTU richness at this rank are shown

in Fig. 2 for all datasets. In further analysis, candidate phyla

for which no taxonomical grouping existed at class level

were also included. In addition, because the Epsilonproteo-

bacteria dominated all datasets, this class was divided

further into genera. Sulfurimonas, being the most abundant

taxon, contribute between 23% and 82% of prokaryotic

abundance in the different datasets, followed by Sulfurovum,

contributing between 5% and 39%.

The classification of S1 shotgun cDNA reads was also

carried out using the RDP CLASSIFIER v2.0 (Wang et al., 2007)

with a confidence threshold of 0.7. Although the taxonomies

used for classification differed slightly, the two methods

agreed for the classification of 93% of the reads at the genus

level, where 69% of the reads could be classified with the RDP

Table 1. Overview of the datasets

Sequence dataset

Total

reads

PCR

cycles

Reads

after

filtering

SSU rRNA

reads�
rRNA

OTUs SDIw
Sequencing

technology

Average

sequence

length (bp)z

Classified

at genus

level (%)‰

S1 shotgun cDNA 190 051 0 156 370 78 111 NA NA GS FLX Titanium 393 71

S1 cDNA amplicons 5708 20 4 341 4338 252 0.70 GS FLX 231 84

S1 DNA amplicons 7812 20 6 263 6254 385 0.88 GS FLX 231 65

S2 shotgun cDNA 172 930 0 145 160 85 893 NA NA GS FLX Titanium 382 78

S2 cDNA amplicons A 8505 20 6 495 6493 213 0.45 GS FLX 231 92

S2 cDNA amplicons B 12 568 25 8 904 8903 314 0.54 GS FLX Titanium 307 89

S2 DNA amplicons A 6735 20 5 206 5199 261 0.84 GS FLX 231 54

S2 DNA amplicons B 5579 30 3 986 3980 292 0.88 GS FLX 231 69

S2 shotgun DNA 637 973 0 484 176 565 NA NA GS FLX Titanium 433 59

All datasets 1 047 861 820 901 199 736 982z 388 75

�Reads with a BLASTN alignment bit-score 4 150 to the SSURef database.
wSimpson’s diversity index (1-D; Simpson, 1949) calculated using all rRNA OTUs.
zAverage sequence length after removal of barcode and primer sequences.
‰Share of prokaryotic reads classified at domain that were also unambiguously classified at genus level.
zIncluding amplicon reads only.
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CLASSIFIER and 71% with the classification method presented

in this study (see Fig. S1). As opposed to this MEGAN-based

classification, the RDP CLASSIFIER cannot classify any of the

23% eukaryotic sequences in this dataset, because the

default version of the program was not trained for classifica-

tion of eukaryotic sequences.

The relative abundance and OTU richness of taxa when

combining all amplicon datasets are plotted in Fig. S2. A

clear log-linear relationship was observed between abun-

dance and richness (R2 = 0.78, Po 2E� 16), similar to what

has been observed in bacterial communities inhabiting the

ocean surface (Kirchman et al., 2010). The ‘Miscellaneous

Crenarchaeotic Group’ and the Archaeoglobi are the two

largest outliers from this relationship, showing an unexpect-

edly low diversity.

To identify systematic differences between the datasets,

Bray–Curtis dissimilarities (Legendre & Legendre, 1998)

were calculated using relative prokaryotic abundances (ex-

cluding eukaryotic and insufficiently abundant taxa; Table

S3). In a hierarchical average linkage clustering of these

distances, all RNA-derived datasets form a separate cluster

(Fig. 3a). This indicates that the difference between DNA-

and RNA-derived datasets was more substantial than other

experimental factors. To visualize the patterns in predicted

community composition, NMDS was also performed

(Fig. 3b). The resulting two-dimensional map agrees with

the clustering analysis.

Comparing composition and diversity between
DNA and RNA

In order to determine differences in predicted community

composition between 16S rRNA gene datasets from DNA

and RNA, two pairs of amplicon datasets were compared.

Fig. 2. Relative abundance (a) and OTU richness (b) for all datasets, given at the class rank for all prokaryotes and phylum rank for eukaryotes. Relative

abundance is shown as the number of reads assigned to a taxa divided by the total number of prokaryotic reads. The Chao1 estimate of minimum OTU

richness is written next to each bar in (b).
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Each pair thus contained two datasets: one from the DNA

and one from the RNA of the same nucleic acid extraction

(Fig. 1). The comparison revealed a similar abundance

of the numerically dominant taxa, whereas the majority

of rare taxa were more abundant in DNA than RNA (Fig. 4).

The five most differentially observed taxa (lowest corrected

P-values) are listed in Table 2 (all with Po 0.05 are listed

in Table S4). Rarefaction curves of all amplicon datasets

(Fig. S3) showed that the OTU richness was higher in all

DNA-derived datasets compared with RNA from the same

sample, when adjusting for sequencing depth. Simpson’s

diversity indices (1-D; Simpson, 1949) showed the same

pattern (Table 1).

Comparing composition between amplicon and
shotgun sequencing

To identify and quantify any taxon-specific PCR bias influen-

cing the formation of amplicons, four comparisons were made

between datasets originating from amplicon vs. shotgun

sequencing. The comparisons were made so that both datasets

always originated from the same pool of DNA or cDNA (see

Fig. 1). The relative abundances for taxa between the two

datasets in each pair are compared in Fig. 5 (and Table S5).

Taxa with less than five reads expected in the smallest

dataset were excluded from further analysis, in order to

compensate for difference in sequencing depth.

Whereas several taxa were similarly abundant, some taxa

were consistently underrepresented in all amplicon sequen-

cing datasets, indicating a negative amplification bias. The

same is true for the five taxa with most significant differences

(Table 3). When analysing their primer-binding sites, we

identified a shared sequence feature between the taxa; in their

degenerate primer-binding position, all are dominated by A or

T. Only two taxa appear to be dominated by reads mismatch-

ing the forward primer, namely Halobacteria (4 90% of

reads) and the candidate phylum ‘BD-1-5’ (4 95%), both

significantly underrepresented in amplicon datasets.

In order to analyse the factors that could influence ampli-

fication efficiency during the PCR, a multidimensional linear

regression was performed. We found that the RP between

abundance in the amplicon and shotgun sequence datasets

was significantly correlated with three parameters: (1) the

shares of reads with mismatches to the forward primer

(MMF), (2) a G/C base in the degenerate position of the

Fig. 3. Dendrogram resulting from hierarchical average linkage clustering

(a) and NMDS map (b) of the datasets, based on Bray–Curtis dissimilarities

between relative taxon abundances. Datasets obtained using sequencing

of cDNA are plotted as circles and those from genomic DNA as triangles.

Filled circles and triangles indicate datasets from shotgun sequencing of

cDNA and DNA; empty ones show amplicon sequencing.

Fig. 4. Relative taxon abundance in amplicon datasets from DNA

plotted vs. corresponding reverse-transcribed RNA (cDNA) datasets, in

logarithmic scale.
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forward primer (GCF) and (3) a G/C in the degenerate

position of the reverse primer (GCR). Values of these para-

meters were estimated for each taxon using shotgun sequences

(Table S5). MMF had the largest influence on RP (R2 = 0.49;

P = 2E� 9; RP = 0.39–1.2�MMF10.91�GCF10.26�GCR).

About half of the variation could thus be explained by PCR

bias caused by primer mismatch and preferential binding to

templates matching the primer versions with G/C in the

degenerate positions. Mismatches in the reverse primer did

not add any significance as explanatory variables for PCR

bias. The correlation between mismatching shares in the

forward and reverse primers was weak and cannot explain

this.

The number of PCR cycles differed between datasets

(Table 1) and we expected this to influence the extent of the

bias. In an attempt to use a simple model with an exponen-

tially increasing bias, the RP1/n was instead used as dependent

(where n is the number of cycles used), but it did not show a

significant correlation to any explanatory variables. Instead,

using a linear model where bias was additive with every cycle,

as suggested by Polz & Cavanaugh (1998), increased the fit of

regression (R2 = 0.51; P = 5E� 10), suggesting that the bias

was mainly template dependent, not influencing product–

primer annealing to the same extent.

Discussion

Community composition and abundant taxa

All DNA- and RNA-based datasets were dominated by the

epsilonproteobacterial genera Sulfurimonas and Sulfurovum,

together contributing between 50% and 80% of relative

abundance (Fig. 2). These genera are commonly found in

vent fluid mixing zones of hydrothermal habitats. Typically

restricted to areas with low oxygen concentrations, they are

mesophilic chemoautotrophs capable of oxidizing sulphur

compounds, coupled with the reduction of nitrate or oxygen

and use of the rTCA cycle for CO2 fixation (Campbell

et al., 2006; Sievert et al., 2008; Yamamoto et al., 2010). Most

Gammaproteobacteria present in the samples appeared to be

from the Methylococcales order, indicating that they oxidize

methane rather than sulphur compounds. Deltaproteo-

Table 2. The five taxa with the most significant differences in relative abundance between sequencing of DNA and cDNA amplicons in samples 1 and 2

Comparison

Sample

DNA dataset cDNA dataset Change relative cDNA

Taxon Count Share (%) Count Share (%) 1/� RP� ORw DP (%)z P‰ Pcorr
‰ Pall

z

Flavobacteria 1 100 1.66 17 0.40 1 4.16 4.21 1.26 5E�10 2E� 08 2E�16

Flavobacteria 2 64 1.30 14 0.22 1 5.88 5.94 1.08 2E�10 8E� 09

Sulfurimonas 1 1982 47.24 2450 66.98 � 0.71 0.44 � 19.74 6E�10 4E� 08 9E�16

Sulfurimonas 2 2133 74.35 5294 88.32 � 0.84 0.38 � 13.98 6E�10 2E� 08

Sulfurovum 1 1626 38.75 997 27.26 1 1.42 1.69 11.50 7E�10 5E� 08 4E�12

Sulfurovum 2 274 9.55 398 6.64 1 1.44 1.48 2.91 2E�06 9E� 05

Thermoplasmata 1 764 12.72 32 0.75 1 16.88 19.19 11.96 4E�10 2E� 08 3E�16

Thermoplasmata 2 839 16.99 23 0.36 1 46.90 56.30 16.63 5E�10 2E� 08

VC2.1 Bac22 1 233 3.88 53 1.25 1 3.11 3.19 2.63 3E�10 1E� 08 2E�16

VC2.1 Bac22 2 225 4.56 53 0.83 1 5.46 5.67 3.72 3E�10 1E� 08

�Ratio of proportions (DNA dataset share/cDNA dataset share).
wOdds ratio.
zDifference of proportions (DNA dataset share� cDNA dataset share).
‰P-value for H0 assuming equal abundance in both samples, tested using Fisher’s exact test. Pcorr gives the P-value after Bonferroni correction for

multiple hypothesis testing.
zMultiplication of all Bonferroni-corrected P-values for taxa throughout datasets yielding the total probability of H0.

Fig. 5. Relative taxon abundance in amplicon datasets plotted vs. cor-

responding shotgun datasets, in logarithmic scale. Circles indicate the

comparison of cDNA datasets, and triangles that of DNA.
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bacteria, mainly from the sulphate-reducing genus Desulfobac-

terium, accounted for up to 9% of abundance in the datasets.

The co-occurrence of sulphur-oxidizing Epsilon-

proteobacteria and sulphate-reducing Deltaproteobacteria has

been reported previously in hydrothermal environments and

may suggest an internal sulphur cycle within the sediments

(Teske et al., 2002; Perner et al., 2007). Other abundant taxa

include Bacteriodetes and Spirochaetes, phyla consisting mainly

of heterotrophs, also detected previously in hydrothermal

environments (Kirchman, 2002; Imachi et al., 2008). Sulfuri-

monas and Sulfurovum have also been found to dominate

several 16S rRNA gene clone libraries from hydrothermal vent

systems and their associated microbial mats (e.g. Moyer et al.,

1995; Kormas et al., 2006; Davis & Moyer, 2008). In the ‘Marker

52’ dataset taken from vent fluids above a microbial mat,

collected at the Juan de Fuca Ridge (Sogin et al., 2006; Huber

et al., 2007), these two groups accounted for about 60% of all

sequences. The third and fourth most abundant taxa from

Marker 52 were Deferribacterales and Desulfobacterales. The

latter is present at a similar abundance in our samples, whereas

the former is present at a much lower abundance. Therefore, we

can assume that Marker 52 was sampled from a similar

community. It also shares similar chemical characteristics such

as a relatively low pH (5.1 vs. 4.5 in our sample) and a high H2S

concentration. Four out of 14 low-temperature vent samples

from active seamounts in the Mariana Arch (FS447-449,

FS473), studied by Huber et al. (2010), were also dominated

by Sulfurimonas and Sulfurovum. These four samples also had a

low pH (2.6–5.9) and many were from sites with ‘abundant

white microbial mats’.

The shotgun sequencing datasets (especially cDNA) allowed

insights into the eukaryotic community of the microbial mats

studied (Fig. 1). Between 7% and 19% of the total SSU rRNA

reads were eukaryotic. A majority were identical to the 18S

rRNA sequence of Halomonhystera disjuncta, a cosmopolitan,

bacterivorous nematode previously found in similar environ-

ments, known for its high resistance to environmental stress

(Vanreusel et al., 2010). In addition, a diversity of eukaryotic

taxa were present, most notably ciliates and copepods.

Diversity and OTU richness

OTU richness of the datasets in this study ranged between

213 and 385 and clustering of all amplicon datasets resulted

in 982 OTUs. As indicated by rarefaction analysis (Fig. S3)

and Chao1 estimates of minimum diversity (Fig. 2b), our

sampling was far from exhaustive. The deeper sequencing

carried out by Huber et al. (2007) resulted in over 20 000

bacterial and archaeal OTUs in the two datasets from

Marker 52 and Bag City. Higher sequencing depth is clearly

Table 3. The five taxa with the most significant differences in relative abundance between sequencing of amplicon and shotgun libraries from the same

DNA or cDNA pool

Comparison

DNA pool

Amplicon sequencing Shotgun sequencing Change relative shotgun abundance

Taxon Count Share (%) Count Share (%) RP� ORw DP (%)z P‰ Pcorr
‰ Pall

z

Arcobacter S1 cDNA 2 0.05 338 0.74 0.074 0.073 � 0.68 4E� 09 2E� 07 4E� 23

Arcobacter S2 cDNAA 1 0.02 468 0.74 0.023 0.022 � 0.72 2E� 10 1E� 08

Arcobacter S2 cDNAB 2 0.03 468 0.75 0.033 0.033 � 0.73 2E� 10 2E� 08

Deltaproteobacteria S1 cDNA 118 2.78 4759 7.92 0.35 0.33 � 5.14 5E� 10 1E� 08 3E� 32

Deltaproteobacteria S2 cDNAA 156 2.46 5956 7.80 0.31 0.30 � 5.35 6E� 10 2E� 08

Deltaproteobacteria S2 cDNAB 96 1.10 5956 7.82 0.14 0.13 � 6.72 7E� 10 4E� 08

Deltaproteobacteria S2 HMW DNA 105 2.75 51 10.04 0.27 0.25 � 7.29 7E� 11 3E� 09

Flavobacteria S1 cDNA 17 0.40 1289 2.14 0.19 0.18 � 1.74 3E� 10 9E� 09 5E� 33

Flavobacteria S2 cDNAA 14 0.22 1609 2.11 0.10 0.10 � 1.89 3E� 10 9E� 09

Flavobacteria S2 cDNAB 102 1.17 1609 2.11 0.56 0.55 � 0.94 6E� 10 3E� 08

Flavobacteria S2 HMW DNA 23 0.60 28 5.51 0.11 0.10 � 4.91 4E� 11 2E� 09

Spirochaetes S1 cDNA 58 1.37 1518 2.53 0.54 0.53 � 1.16 4E� 07 1E� 05 6E� 30

Spirochaetes S2 cDNAA 57 0.90 1996 2.61 0.34 0.34 � 1.72 4E� 10 1E� 08

Spirochaetes S2 cDNAB 71 0.82 1996 2.62 0.31 0.31 � 1.81 4E� 10 2E� 08

Spirochaetes S2 HMW DNA 16 0.42 21 4.13 0.10 0.10 � 3.72 4E� 11 2E� 09

Sulfurospirillum S1 cDNA 22 0.60 2449 5.36 0.11 0.11 � 4.75 4E� 10 2E� 08 3E� 23

Sulfurospirillum S2 cDNAA 62 1.03 3156 5.00 0.21 0.20 � 3.96 4E� 10 2E� 08

Sulfurospirillum S2 cDNAB 256 3.20 3156 5.08 0.63 0.62 � 1.88 6E� 10 5E� 08

�Ratio of proportions (PCR amplicon dataset share/shotgun dataset share).
wOdds ratio.
zDifference of proportions (PCR amplicon dataset share� shotgun dataset share).
‰P-value for H0 that assumes equal abundance in both samples, tested using Fisher’s exact test. Pcorr gives the P-value after Bonferroni correction for

multiple hypothesis testing.
zMultiplication of all Bonferroni-corrected P-values for taxa throughout datasets yielding the total probability of H0.
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a part of the explanation for the much higher diversity

estimate. However, sequencing noise is likely to contribute

even more. The filtering and noise-removal method used

in this study (Quince et al., 2011) instead yields more

accurate richness values that cannot be directly compared

with studies where a corresponding method was not used

(Quince et al., 2009). Huber and colleagues also noted

that about 1/3 of reads were more than 10% different from

the closest reference sequence, whereas only about 3% of

shotgun reads and 0.5% of amplicon reads in our datasets

share this low similarity to the reference database used

here. This could be due to better sequence coverage in our

database, as well as another effect of noise reduction and

improved filtering of low-quality reads.

Apart from the dramatic difference in richness estimates,

diversity structures are very similar in our datasets and

Marker 52. In both studies, the dominating Epsilonproteo-

bacteria contribute about one third of the bacterial OTU

richness while the archaea appear to be less diverse com-

pared with their abundance. In the study where Huber et al.

(2010) targeted only Epsilonproteobacteria, they used a more

aggressive OTU clustering algorithm to better compensate

for sequencing noise. Rarefied OTU richness at 3000 reads

for the four datasets mentioned (FS447-449, FS473) is

similar to our DNA-based datasets with around 100 OTUs.

Variance and systematic methodological
differences

The experimental design allowed us to explore the differences

between the perceived community structures when using

DNA vs. RNA as marker molecules, as well as amplicon vs.

shotgun sequencing (see Fig. 1). The two samples were used to

compare the magnitude of putative methodological differ-

ences with that of sample-to-sample variation. Many statisti-

cally significant differences between the resulting community

composition predictions were consistently observed in both

samples, indicating that they were systematic. The clustering

and NMDS analyses indicate that the choice of marker

molecule and sequencing strategy (DNA vs. cDNA and

amplicon vs. shotgun) influenced the predicted community

composition, and that this influence was stronger than the

variation between the two biological replicates (S1 and S2),

even though different sampling methods were used to collect

the two samples

Community differences between RNA and DNA

The predicted community composition differed signifi-

cantly and systematically depending on whether DNA or

RNA was extracted. Several taxa had a significantly lower

relative abundance in RNA-derived datasets. The most

noticeable difference in relative abundance was at the

domain level, where Archaea constituted between 16% and

30% in DNA amplicon datasets and only around 1% in the

cDNA datasets. In addition, amplicon sequencing from

cDNA resulted in datasets with a consistently lower Simp-

son’s diversity index than from DNA (Table 1).

The abundances of rRNA and that of its gene indicate

different aspects of the microbial community and are known

to differ from each other over shorter and longer time scales

(e.g. Rodriguez-Blanco et al., 2009; Jones & Lennon, 2010;

McCarren et al., 2010). While ribosome abundance gener-

ally reflects activity, rRNA gene abundance includes slow-

growing, dormant and dead organisms. Inactive cells, in-

cluding spores, are thought to act as a seed bank and play an

important role in the maintenance of the high biodiversity

observed in most ecosystems (Pedrós-Alió, 2006; Sogin

et al., 2006; Jones & Lennon, 2010). Thus, these differences

are very likely to reflect actual biological differences between

the RNA and the DNA pools. In addition, bias introduced

during the reverse-transcription step may have contributed

to the differences. Although less likely than for mRNA,

partial degradation of rRNA during transport to the surface

may also have biased this comparison.

Influence of PCR bias on predicted community
composition

Comparisons between the relative taxa abundances obtained

using amplicon and shotgun sequencing suggested that at

least three factors significantly influenced the differences

observed. The most influential factor was the presence of

mismatches between the forward primer and the template.

The majority of mismatches occurred near the 30 end of

the primer (between positions 13 and 17), which has been

shown to be detrimental for primer annealing (Bru et al.,

2008; Wu et al., 2009). The other two factors were

the presence of a G/C- vs. an A/T-base in the degenerate

base of the forward and reverse primer-binding sites. This

agrees with previous studies (e.g. Polz & Cavanaugh, 1998)

and the strength of this bias is thought to increase with

annealing temperature (Sipos et al., 2007). Therefore, we

used the lowest possible temperature still leading to a

specific product. The best option would certainly be to

avoid primers with degenerate bases (except A/T or G/C),

but this is impossible for conventional PCR primers to

combine with targeting a broad spectrum of archaeal and

bacterial groups. We also investigated the effect of differing

sequencing chemistry (FLX vs. Titanium) and reverse pri-

mers (1391R vs. 1492R) on amplicon generation from the

same template. The resulting Bray–Curtis distance between

them was the smallest between any datasets (Table S3,

Fig. 3a), showing that the applied PCR protocol yielded a

reproducible, stable estimation of community composition,
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even though biased by preferential primer–template anneal-

ing, as discussed above.

Concluding remarks

Applied to samples from the Jan Mayen hydrothermal vent

field, we have demonstrated how different community

sequencing strategies can provide complementary and, in

some cases, contrasting views of taxonomical composition

and diversity. The systematically differing results obtained

illustrate the importance of considering the study design

carefully. The methods compared here are also complemen-

tary and we have shown that combining them can provide

additional insights into the ecology of microorganisms at

the hydrothermal vents studied.
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