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Phylogenetic Inference

David L. Swofford, Gary J. Olsen,
Peter J. Waddell, and David M. Hillis

INTRODUCTION

Inferring phylogenetic relationships from molecular data requires the selection of
an appropriate method from the many techniques that have been described. Un-
fortunately, phylogenetic analysis is frequently treated as a black box into which
data are fed and out of which “The Tree” springs. Our goal in this chapter is to
provide more than a cursory description of the available analytical methods;
rather, we hope to develop a conceptual framework for understanding the theo-
retical and practical distinctions among alternative methodologies. Phylogenetic
analysis of molecular data is in the midst of a remarkable transformation. The
most striking theme in this shift is an increased emphasis on the use of methods
that are based on models of evolutionary change. Moreover, users of methods that
do not require explicit models are now much more likely to incorporate modifi-
cations based on reasonable assumptions about the evolutionary process than
when the first edition of Molecular Systematics appeared only six years ago. We
view this trend as a positive one and have reorganized our chapter accordingly.

Regrettably, we cannot accomplish all of the above objectives and at the same
time provide an exhaustive review of the voluminous literature on phylogenetic
reconstruction; however, Felsenstein (1982, 1988a, 1993) and Hillis et al. (1993a)
have presented general reviews of methods for inferring phylogenies. Instead,
we will focus on methods that are currently in widespread use or that are likely
to be used in the foreseeable future. We will also avoid the temptation to cite
every relevant paper, limiting our citations to papers that are either of funda-
mental importance to the development of a method or that provide the clearest
explanations of that method.

As any reader even moderately familiar with the current state of affairs in

407



408 Chapter 11 | Swofford, Olsen, Waddell & Hillis

phylogenetics already knows, debates among pro-
ponents of rival methodologies are often intense
and sometimes unnecessarily acrimonious. Con-
sequently, we will offer recommendations where
we deem them appropriate, but will deliberately
avoid taking strong positions on or making con-
troversial assertions about issues where there is
room for legitimate disagreement. Instead, we
hope to provide sufficient background so that
readers will be able to make informed decisions
regarding the techniques most appropriate for
their own data. Our treatment in this chapter will
be limited to the inference of the phylogenetic his-
tory of the genes under study. For a variety of rea-
sons, these “gene trees” may fail to reflect the re-
lationships of the organisms from which the genes
were sampled. A discussion of these and related
issues is presented in Chapter 1; we will not ad-
dress them further here.

Algorithms versus Optimality Criteria

Inferring a phylogeny is an estimation procedure;
we are making a “best estimate” of an evolution-
ary history based on the incomplete information
contained in the data. In the context of molecular
systematics, we generally do not have direct in-
formation about the past—we only have access to
contemporary species and molecules. Because we
can postulate evolutionary scenarios by which any
chosen phylogeny could have produced the ob-
served data, we must have some basis for select-
ing one or more preferred trees from among the
set of possible phylogenies. Phylogenetic infer-
ence methods seek to accomplish this goal in one
of two ways: (1) by defining a specific sequence of
steps (an algorithm) that leads to the determina-
tion of a tree; or (2) by defining a criterion for
comparing alternative phylogenies to one another
and deciding which is better (or that they are
equally good).

Purely algorithmic methods combine tree in-
ference and the definition of the preferred tree
into a single statement. These methods include all

forms of pair-group cluster analysis (e.g., UP-
GMA) and some other distance methods such as
neighbor joining (discussed later in this chapter).
The methods tend to be computationally fast be-
cause they proceed directly toward the final solu-
tion without requiring evaluation of large num-
bers of competing trees.

The second class of methods has two logical
steps. The first step is to define an optimality cri-
terion (formally described by an objective func-
tion) for evaluating a given tree—i.e., a score is as-
signed and subsequently used for comparing one
tree to another. The second is to use specific algo-
rithms for computing the value of the objective
function and for finding the trees that have the
best values according to this criterion (a maxi-
mum or minimum value, as appropriate). Thus,
the evolutionary assumptions made in the first
step are decoupled from the computer science of
the second step. The price of this logical clarity is
that the methods tend to be much slower than
those of the first class, a consequence of having to
search for the tree(s) with the best score. For data
sets containing more than about 8 to 20 taxa, the
search for the best tree is usually not exact (be-
cause of the large number of possible solutions),
and thus we must add caveats regarding the thor-
oughness of the search for the optimal tree. These
issues are covered in detail below.

It is important to distinguish between the
uses of algorithms in the two approaches. In a
purely algorithmic method, the algorithm defines
the tree selection criterion and takes on funda-
mental importance. In a criterion-based method,
however, the algorithms are merely tools used in
evaluating the objective function and searching
for trees that optimize it.* Because criterion-based
methods can assign scores to every tree examined,
phylogenies can be ranked in order of preference
according to the chosen criterion. This is an enor-
mous advantage over purely algorithmic meth-
ods. If a criterion-based method finds that there
are thousands or millions of trees that explain the
data about equally well, the user of the method

* Actually, the same algorithm may be used in both approaches, albeit for very different goals. For instance, an algo-
rithm used to specify a final tree in a purely algorithmic method may be used to find an initial tree for a criterion-

based method (e.g., as a starting point for branch-swapping rearrangement algorithms).



will not be misled into believing that any particu-
lar tree is well-specified. On the other hand, when
a purely algorithmic method determines a single
tree, the user will have no immediate knowledge
about the strength of support for that tree. Some
workers (e.g., Hedges et al., 1992b) have argued
that algorithmic methods can be rescued by using
statistical methods such as nonparametric boot-
strapping (see the section “Reliability of Inferred
Trees,” later in this chapter) to assess the confi-
dence in a tree found using an algorithmic
method. This position fails to address the criticism
that algorithmic methods generally do not ad-
dress the operational evolutionary assumptions.
As an extreme example, consider an algorithm
that chooses trees independently of the data, for
example by labeling the tips of a maximally asym-
metric tree in alphabetic order of the species
names. Repeated analyses using different re-sam-
plings of the data will always generate the same
tree, leading to the obviously absurd conclusion
that the tree is extraordinarily reliable.

Use of Models and Assumptions
in Phylogenetics

Although we will deal extensively with specific
models of the evolutionary change of molecules,
a preliminary discussion of the relevance of mod-
els in general is in order at the outset. Phyloge-
netic inferences are premised on the inheritance of
ancestral characteristics, and on the existence of
an evolutionary history defined by changes in
these characteristics. The stable inheritance of
characteristics is mediated by the genome. Differ-
ences due to epigenetic or environmental factors
do not provide useful phylogenetic information
and must be specifically avoided; all characteris-
tics of interest are genetically mediated. Therefore,
the data for phylogenetic inference reflect, more
or less directly, genomic information. From this
reductionistic perspective, a complete evolution-
ary history is synonymous with an event-by-event
accounting of fixed mutations in every genomic
lineage of interest. This view of the problem pro-
vides a common framework, albeit a purely con-
ceptual one, for analyzing and comparing types
of molecular data and analysis techniques.
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If a phylogenetic inference method could be
based upon a complete knowledge of the evolu-
tionary process, it would be free of systematic er-
ror (i.e., if enough data were obtained, the method
would consistently obtain the true phylogeny).
Even in the absence of such complete knowledge,
hypothetical models of the evolutionary process
could be used to derive (or otherwise justify) tree
inference methods that would be free of system-
atic error, if the assumed model were correct. A vari-
ety of inference techniques have been formulated
on the basis of explicit evolutionary assumptions.
These model-based methods are not necessarily
invalidated when one or more of their assump-
tions is violated—a model does not have to be
perfect in order to be useful. That is, although the
assumptions may be sufficient to ensure the va-
lidity of a technique, under special circumstances
they might not all be necessary, and the method
may be robust to violation of its assumptions. Fur-
thermore, model assumptions need not be ac-
cepted in a vacuum; data can and should be al-
lowed to reject the model if the model is
inadequate.

Although almost all methods accept the ap-
propriateness of a tree-like model of evolution (a
strong assumption in itself), many commonly
used methods of phylogenetic inference are not
explicitly based on a set of evolutionary assump-
tions. However, the lack of stated assumptions
does not mean that a method is assumption-free;
the assumptions are simply implicit rather than
explicit. For example, the widely used method of
maximum parsimony does not depend on a pre-
cise model, but believing its results does require
one to believe that plausible evolutionary scenar-
jos that could cause it to fail have not taken place.
It is often argued that it is circular to model char-
acter change for the purpose of estimating a phy-
logeny because we cannot begin to understand
the processes of character change without first
knowing the tree. We prefer, instead, to think of
the problem as one of “reciprocal illumination”
(Hennig, 1966): having some idea of the phy-
logeny is relevant to the development of good
models, but ever-improving models can also lead
to better phylogenetic inferences. Thus, both
classes of methods are useful and important. We
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see it as unfortunate that some workers, in their
zeal to avoid circularity, limit themselves to
“model-free” methods that may be more likely to
violate their (implicit) assumptions than the meth-
ods they reject, for which the assumptions are
more explicit.

One assumption implicit in this general view
concerns the uniqueness of the genomic lineage.
The potential confusion due to lateral gene trans-
fer has received much recent attention. When
transfer is common among the lineages of inter-
est, a population genetic analysis (Chapter 10) is
most appropriate. Our presentation is appropriate
for cases in which interspecies differences are
large compared to intraspecific variation.

Definitions of Terms

Most of the analytical techniques that we will dis-
cuss result in the inference of an unrooted tree or
unrooted phylogeny—a phylogeny in which the
earliest point in time (the location of the common
ancestor) is not identified. (We generally use free
and phylogeny interchangeably.) Also, biologists
often refer to an unrooted tree as a network; how-
ever, this usage conflicts with the definition ap-
plied to that term by mathematicians and should
be avoided (the section “Split Decomposition”
uses network in the correct sense). When we find
it necessary to distinguish between rooted and
unrooted phylogenies or trees, we will do so ex-
plicitly.

The components of a phylogenetic tree go by
a variety of names. The contemporary taxa corre-
spond to terminal nodes or tips, also called leaves
or external nodes. The branch points within a tree
are called internal nodes. Nodes are called ver-
tices or points by some authors. The branches
connecting (incident to) pairs of nodes are also
called edges, links, or segments. We will use the
terms peripheral branches to refer to branches
that end at a tip and interior branches (or, in the
case of a tree with four terminal nodes, central
branch) to refer to branches that are not incident
to a tip.

If just three branches connect to an internal
node, then the node represents a bifurcation, or
dichotomy. If there are more than three branches

connected to an internal node, then the node rep-
resents a multifurcation, or polytomy. A tree in
which all internal nodes represent bifurcations is
said to be binary, fully resolved, or strictly bifur-
cating. A tree that contains a single internal node
is called a star tree.

An unrooted, fully resolved tree has T termi-
nal nodes (corresponding to the taxa) and T -2 in-
ternal nodes. The tree has 2T — 3 branches, of
which T - 3 are interior and T are peripheral. The
total number of distinct unrooted, strictly bifur-
cating, trees for T taxa is

iy
BT =]]2i-5 (1)
i=3

(Felsenstein, 1978b). Adding a root adds one more
internal node and one more interior branch. Since
the root can be placed along any of the 2T -3
branches, the number of possible rooted trees is
increased by a factor of 2T - 3.

TYPES OF DATA

All of the experimental data gathered by the tech-
niques in this volume fall into one of two broad
categories: discrete characters, and similarities or
distances. A discrete character provides data
about an individual species or sequence. Charac-
ter data are often transformed into similarity or
distance values representing quantitative com-
parisons of two species or sequences; each such
measure describes a pairwise relationship. Of the
methods discussed in this book, only DNA-DNA
hybridization data are collected directly in the
form of pairwise distance comparisons. Appro-
priate distance measures and transformations for
DNA-DNA hybridization data are discussed in
Chapter 6. Our discussion here focuses on charac-
ter data.

Discrete character data are those for which a
data matrix X assigns a character state x;; to each
taxon i for each character j. Although systematists
sometimes disagree about the terminological dis-
tinction between character and character state, we



prefer to think of characters as independent vari-
ables whose possible values are collections of mu-
tually exclusive character states.

The assumption of independence among
characters is common to most character-based
methods of analysis. When we can not assume in-
dependence, we are forced to take covariances
among characters into account, and the computa-
tional methods become considerably more com-
plicated. Furthermore, the assumption of inde-
pendence enables ‘us to treat each position
separately in certain time-consuming stages of
computational algorithms, thereby allowing prob-
lems to be subdivided into a number of much
simpler subproblems. (For example, numbers of
substitutions can be minimized separately posi-
tion-by-position and then summed over positions
in a parsimony algorithm, or probabilities can be
multiplied over positions in a maximum likeli-
hood approach.)

A second assumption required of character
data is that the characters be homologous. As ar-
ticulated in Chapter 1, the concept of homology is
complicated by the variety of meanings that have
been applied to the term. In general, by homology
we mean that a character must be defined in such
a way that all of the states observed over taxa for
that particular character must have been derived,
perhaps with modification, from a corresponding
state observed in the common ancestor of those
taxa. When we are interested in relationships
among species rather than among genes, we fur-
ther restrict this definition to include only orthol-
ogous, as opposed to paralogous or xenologous,
genes.

In general, character data are either qualita-
tive, in which case the possible states are two or
more discrete values; or quantitative, in which
case the characters vary continuously and are
measured on an interval scale. Qualitative charac-
ters may be further subdivided into binary (two
possible states) and multistate (three or more pos-
sible states). Binary characters typically represent
the presence or absence of some item, such as the
recognition sequence for a restriction endonucle-
ase at a certain map location (restriction site) or a
particular allele at an isozyme locus.

Multistate characters may be ordered or un-
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Figure 1 Ordered and unordered characters. (A) Or-
dered multistate character (transformation between any
two states that are not directly connected implies pas-
sage through one or more intermediate states). (B) Un-
ordered multistate character (any state can transform
directly into any other state). (C) Ordered multistate
characters in which the polarity is indicated (the order-

ing relation is the same in all three cases but the ances-
tral state differs).

ordered, depending on whether an ordering rela-
tionship is imposed upon the possible states (Fig-
ure 1). For example, nucleotide sequence data are
generally treated as unordered multistate charac-
ters, since there is no a priori reason to assume, for
instance, that state C is intermediate between
states A and G. In the context of phylogenetic
analysis, we say that any state is allowed to trans-
form directly into any other state. If, on the other
hand, we are willing to make assumptions in-
volving the relationships among the states of a
character, we can rank the character states into an
ordered series (i.e., a linearly ordered character)
or a branching diagram (partially ordered char-
acter or character-state tree.) Multistate ordered
characters are not commonly encountered in mol-
ecular data sets, but they are sometimes used in
the analysis of allozyme data.

The concepts of character order and character
polarity should not be confused. The former de-
fines the allowed character-state transformations,
whereas the latter refers to the direction of charac-
ter evolution. Estimation of character polarity



412 Chapter 11 [ Swofford, Olsen, Waddell & Hillis

generally involves an assessment of the observed
character state most likely to represent the ances-
tral condition (i.e., the state found in the most re-
cent common ancestor of the taxa under study).
An excellent discussion of character ordering and
polarity (in a non-molecular context) can be found
in Mabee (1989). We will return to the subject of
character polarity in the discussion of parsimony
methods.

Quantitative characters are less commonly
used as character data in molecular systematics.
The prominent exception occurs when polymor-
phic characters such as allelic isozymes or
mtDNA haplotypes are coded as frequencies.

Sequence Data

In principle, the use of sequence data as charac-
ters for phylogenetic analysis is straightforward.
Given a set of sequences, the characters are repre-
sented by corresponding positions (offsets) in the
sequences, and the character states are the nu-
cleotide or amino acid residues observed at those
positions. For example, if nucleotide A is observed
to occur at position 139 in a sequence, “position
1397 is the character and “A” is the state assigned
to that character. To simplify our exposition, we
will usually confine our descriptions to nucleotide
sequences unless the distinction is important.
Unfortunately, this simplicity is deceiving. In
addition to requiring the use of homologous mol-
ecules (see Chapter 1), phylogenetic analysis of se-
quence data requires positional homology. That
is, the nucleotides observed at a given position in
the taxa under study should all trace their ances-
try to a single position that occurred in a common
ancestor of those taxa. Except for highly conserved
sequences, insertion and deletion events must
nearly always be postulated in order to make be-
lievable the assumption that nucleotides at corre-
sponding positions in the various sequences are in
fact homologs. An alignment of the sequences is
obtained by inserting gaps, which correspond to
insertions or deletions, into one or more of the se-
quences in order to place positions inferred to be
homologous into the same column of the data ma-
trix. Alignment is often the most difficult and least
understood component of a phylogenetic analysis

from sequence data. Methods for alignment are
discussed in Chapter 9.

Restriction Endonuclease Data

Restriction endonuclease analysis provides char-
acter data in one of two forms, both of which lead
to a set of binary characters for each taxon. Ideally,
the characters are map locations and character
states are presences or absences of the recognition
sequences for particular endonucleases at those
locations (restriction-site data). However, because
the construction of restriction maps is time-con-
suming (see Chapter 8), some workers simply
treat the presence or absence of restriction frag-
ments of a given length as character states (re-
striction-fragment data).

We do not recommend the use of restriction-
fragment data for input to phylogenetic analysis,
primarily because these data violate the assump-
tion of independence among characters. If a new
site evolves between two preexisting sites, one
(longer) fragment disappears and two new
(shorter) ones appear. Thus, even though two
species may share two of the three restriction sites,
they have no fragments in common—a potentially
serious source of error. Some authors (e.g., B. Bre-
mer, 1991) have recognized this difficulty and ar-
gue that it can be overcome by looking at
“enough” fragment data so that each occurrence
of this kind of error will be swamped by other
data. We are unconvinced by this argument, how-
ever, because there is no guarantee that if some-
thing is done inappropriately enough times, all
will work out in the end (and the amount of sys-
tematic error introduced by this shortcut will in-
crease substantially with increasing divergence
among the taxa in the analysis). A second and re-
lated problem with fragment data is that insertions
or deletions are difficult to handle. For example,
the insertion of a length of DNA long enough to al-
ter the mobility of the fragment (but not contain-
ing a restriction site) requires the worker to assert
that a species lacks a fragment found in one or
more other species, even though the restriction
sites responsible for the fragment are at homolo-
gous points on the map (see Chapter 8).

Even when sites are mapped, restriction en-



donuclease data are problematic for phylogenetic
analysis due to the asymmetry in the probabilities
of gaining and losing sites. If a particular sequence
of six base pairs is only one substitution away
from equalling the recognition sequence of a par-
ticular endonuclease (a “one-off” site), then given
that a substitution occurs within the six-base se-
quence, only one of the 18 possible substitutions
of one base for another will convert the sequence
to a restriction site. On the other hand, if the six-
base sequence is already a restriction site, then a
substitution at any of the six positions will cause
the site to be lost. Thus, losing an existing restric-
tion site is much more likely than gaining a site at
a particular location. (For more complete discus-
sions, see Templeton, 1983a, 1983b and DeBry and
Slade, 1985.) Note that this argument applies only
to particular sites in the genome; it does not imply
a net loss of restriction sites during evolution. Be-
cause of these gain-loss asymmetries, special han-
dling may be required for restriction-site data.

Isozyme Data

Allozyme (allelic isozyme) data represent the only
type of isozyme data routinely used in phyloge-
netic analysis (but see Buth, 1984a, and Chapter 4
for a discussion of other data types). These data
are usually presented as a three-dimensional ar-
ray that specifies the frequency of each allele at
each locus in each population or taxon.* Two con-
troversial issues confront the researcher attempt-
ing to estimate phylogenies from allozyme data.
The first concerns whether or not to transform the

_data to genetic similarities or distances. Probably
due more to inertia than anything else, the pre-
dominant mode of analysis throughout the 1970s
and into the 1980s was to compute a matrix of
pairwise similarities or distances between taxa
that served as the input to cluster analysis or ad-
ditive-tree methods. The stereotypical way in
which these data were treated tended to retard the
development of approaches that made direct use
of the character information.
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With the development of character-based
methods, however, came a second controversy,
this one involving the importance of allele fre-
quency information. Some authors (e.g., Micke-
vich and Johnson, 1976) argued that the presence
or absence of an allele was of more fundamental
evolutionary importance than was its frequency
(which was subject to modification by drift
and/or selection), and that frequency information
should therefore be discarded. These authors pre-
ferred to recast the data into presence/absence
form. However, other authors (e.g., Swofford and
Berlocher, 1987) have argued that there is no rea-
son to ignore frequency information in analyzing
allozyme data.

The earliest attempts to use allozyme charac-
ters directly in a phylogenetic analysis generally
treated the allele as the character and either its
presence/absence (e.g., Mickevich and Johnson,
1976) or its frequency (e.g., Buth, 1979b; Simon,
1979) as the character state. This procedure, how-
ever, is open to the same criticism leveled at the
use of restriction fragment data: the assumption
of independence of characters is violated. Specif-
ically, since the frequencies of the alleles at a lo-
cus in a given taxon are constrained to sum to
one, if the frequency of one allele increases, the
frequency of at least one other allele must de-
crease. This property leads to problems, for ex-
ample, when allele-as-character data are sub-
jected to maximum parsimony analysis, where
ancestors are often inferred to contain no alleles
at all (presence/absence coding) or frequencies
that do not sum to one (frequency coding) for
some loci.

Because of these difficulties, Buth (1984a) and
others have advocated an approach that recog-
nizes the locus as the character and the allelic
composition at the locus in each taxon (i.e., allele
or combination of alleles present) as the character
state. For example, if some taxa are fixed either for
allele 2 or for allele b, whereas others are poly-
morphic for both alleles, then three states would
be recognized: “only a,” “only b,” and “a plus b.”

"It is customary to refer to loci as putative or presumptive and to use the term electromorphs rather than alleles because
of the indirect nature of the data and the usual absence of crossing experiments to confirm the mode of inheritance.

For our purposes here, the simpler terms suffice.
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The resulting discrete character states (“particu-
late data”) are either left unordered or ordered
into some logical progression (see Buth, 1984a, for
details} for subsequent analysis.

Despite its intuitive appeal, several factors
limit the utility of the particulate data, locus-as-
character approach. When many different alleles
occur in various combinations across taxa, the
number of unique combinations may approach or
even equal the number of taxa. Such characters
will contain little or no information if the charac-
ter states are left unordered. Ordering the charac-
ter states helps somewhat, but the ordering crite-
ria often seem subjective and arbitrary.

Buth (1984a) distinguished qualitative coding,
in which observed combinations of alleles are
used regardless of frequencies, and quantitative
coding, in which estimated allele frequencies are
used to assess “whether the states expressed by
two taxa are statistically identical.” Obviously,
qualitative coding is extremely susceptible to
sampling error. Consider the example in the
above paragraph. Taxa that were in reality poly-
morphic for alleles a and b would often be incor-
rectly scored as “fixed” if one allele were rare, un-
less sample sizes were large. (Swofford and
Berlocher, 1987, give a table showing the proba-
bility of failing to detect low-frequency alleles in
samples of various sizes; see also Chapter 2). Even
if allele frequencies could somehow be deter-
mined without error, it would be unreasonable to
argue that allele frequencies are so irrelevant that
the distinction between allele frequency arrays of,
say, [0.01, 0.99] and [0.99, 0.01] is unimportant.

Quantitative coding presumably makes use of
contingency-table analysis to test whether two or
more samples could have come from a single ho-
mogeneous population. In most cases involving
interspecific comparisons, however, we know be-
forehand or from the analysis of other loci that
such is not the case, even if the difference between
the allele frequency arrays of two taxa at a partic-
ular locus is not deemed significant. Furthermore,
the power of these tests to detect heterogeneity is
weak unless sample sizes are large. Therefore,
failure to reject the null hypothesis of homogene-
ity should not usually be taken as evidence that
the taxa are “statistically identical.” Because of

these considerations, methods that require re-cod-
ing of allele frequency arrays into discrete states
should be used only when levels of polymor-
phism are low, with problematic loci excluded
from the data set.

J.S. Rogers (1984, 1986) and Swofford and
Berlocher (1987) have developed methods of
analysis that use the observed allele frequencies
directly in character-based analyses rather than
requiring their recoding as discrete states (see the
section on “Parsimony on Allozyme Data”).
Felsenstein’s (1981b) maximum likelihood
method for continuous characters evolving under
a Brownian motion process can also be applied to
gene frequency data (after an appropriate trans-
formation).

Gene Order Data

Phylogenetic inference based on the structural
arrangement of genes, particularly in organellar
genomes, provides a useful alternative to the
more traditional comparison of the sequences of
one or more genes (or indirect measures thereof).
Although we will not discuss the use of gene-or-
der data in detail, there is growing evidence that
such data will provide important information on
relationships, particularly when trying to resolve
ancient divergences. Sankoff et al. (1992) used
gene-order comparisons to estimate a phylogeny
for 16 taxa, including fungi and other eukaryotes,
and obtained a tree highly compatible with our
current understanding of metazoan and fungal re-
lationships. More recently, Boore et al. (1995) have
used gene-order data to address longstanding
questions regarding arthropod relationships. They
were able to draw strong conclusions about rela-
tionships that previously had been highly am-
biguous. Boore et al. (1995), Downie and Palmer
(1992b), and others have argued that gene re-
arrangements are potentially more informative
because they occur less frequently (and hence are
less subject to parallelism and convergence) than
sequence data, and because the large number of
possible character states makes it unlikely that the
same gene order will evolve independently in dif-
ferent lineages. Thus, while gene-order characters
typically are insufficient to obtain a fully resolved



tree, one can generally have high confidence in
the groups that are supported.

Phylogenetic analysis of gene-order data is in
its infancy (although the problems are similar to
those encountered in the analysis of chromosomal
inversions and other rearrangements). A serious
complication is that the characters can no longer
be assumed to evolve independently, because it is
the relationships of the genes to each other that
define the characters. Sankoff et al. (1992) have
developed and implemented a method for mini-
mizing the number of evolutionary events (inver-
sions, transpositions, insertions, and deletions) re-
quired to convert one circular genome into
another. This quantity then serves as the basis for
a distance metric. Others (e.g., Boore et al., 1995)
have performed parsimony analysis on special
codings of the gene order data, despite the non-
independence of the data. It is likely that methods
of analysis for gene-rearrangement comparisons
will be an active area of research for the next few
years.

OPTIMALITY CRITERIA I
PARSIMONY METHODS

Of the existing numerical approaches to inferring
phylogenies directly from character data, meth-
ods based on the principle of maximum parsi-
mony have been the most widely used by far.
Most biologists are familiar with the usual notion
of parsimony in science, which essentially main-
tains that simpler hypotheses are preferable to
more complicated ones and that ad hoc hypothe-
ses should be avoided whenever possible. Meth-
ods for estimating trees under the criterion of par-
simony equate “simplicity” with the explanation
of attributes shared among taxa as due to their in-
heritance from a common ancestor (e.g., Sober,
1989). When character conflicts occur, however, ad
hoc hypotheses cannot be avoided if the observed
character distributions are to be explained, and
assumptions of homoplasy (convergence, paral-
Jelism, or reversal) must be invoked.

In general, parsimony methods for inferring
phylogenies operate by selecting trees that mini-
mize the total tree length: the number of evolu-
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tionary steps (transformations from one character
state to another) required to explain a given set of
data. For example, the steps might be base substi-
tutions for nucleotide sequence data, or gain and
loss events for restriction-site data. Obviously, a
tree that minimizes the total number of steps also
minimizes the number of extra steps (homo-
plasies) needed to explain the data.

In more mathematical terminology, we can
define the general maximum parsimony problem
as the following. From the set of all possible trees,
find all trees 7 such that

B N
L(f} = 2 Z ZU] - diff(xk-j, Kpr ]) (2)

k=1 j=1

is minimal, where L(7) is the length of treet,Bis
the number of branches, N is the number of char-
acters, k* and k” are the two nodes incident to
each branch k, x¢;, and X« represent either ele-
ments of the input data matrix or optimal charac-
ter-state assignments made to internal nodes, and
diff(y,z) is a function specifying the cost of a trans-
formation from state y to state z along any branch.
The coefficient w; assigns a weight to each charac-
ter; it is often set to 1, but this need not be the
case. Note also that diff(y,z) need not equal
diff(z,y), although for methods that yield un-
rooted trees, diff(y,z) = diff(z;y). As discussed be-
low, the definition of optimal character-state assign-
ments may include restrictions on the nature of
permissible character-state changes.

Any discussion of parsimony methods must
distinguish between the optimality criterion
(minimal tree length under a specified set of re-
strictions on permissible character-state changes)
and the actual algorithm used to search for opti-
mal trees. Early descriptions of parsimony meth-
ods (e.g., Farris, 1970) were presented in a way
that tended to obscure the boundaries between
criteria and algorithms. Biologists attempting to
understand a method should not become so
mired in algorithmic details that they lose track
of the underlying biological principles and as-
sumptions (Felsenstein, 1982). Algorithms tend to
have short life spans, because better ones are con-
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stantly being invented. For example, Farris’s
(1970) algorithm for estimating minimum-length
trees under the Wagner parsimony criterion is
not, to our knowledge, used in any modern,
widely used parsimony computer program (e.g.,
Farris's Hennig86, Felsenstein’s PHYLIP-MIX, or
Swofford’s PAUP), but his criterion forms the ba-
sis for all of them. For these reasons, the concep-
tual framework in which we will discuss parsi-
mony (and other) criteria assumes that the
problem of finding optimal trees is not at issue.
We assume, for the moment, that every possible
tree can be evaluated, optimizing each one ac-
cording to the chosen criterion and ranking them
according to that criterion. We will take up the
matter of searching for optimal trees in a subse-
quent section.

A common misconception regarding the use
of parsimony methods is that they require a priori
determination of character polarities (see above).
In morphologically based studies, character po-
larity is often inferred using the method of out-
group comparison, and the resulting “polarized”
characters form the basis of the analysis. Further-
more, since a “hypothetical ancestor” is implied
by the polarity assignments, the output of an
analysis of polarized characters is a rooted tree.
Whereas specification of polarities provides a suf-
ficient basis for obtaining rooted (rather than un-
rooted) trees, it is by no means prerequisite to the
use of parsimony methods. This circumstance is
fortunate, since the estimation of character polar-
ity is both more difficult and less meaningful for
most kinds of molecular data. All that is required
to obtain rooted trees from parsimony analysis is
to include in the data set one or more assumed
outgroup taxa. The location at which the out-
group joins the unrooted tree implies a root with
respect to the ingroup taxa. We emphasize, how-
ever, that the assignment of taxa to the outgroup
constitutes an assumption that the remaining taxa
(the ingroup) are monophyletic (an assumption
that hopefully is justified by evidence extrinsic to
the data at hand). If this assumption is wrong, the
tree will be rooted incorrectly.

Parsimony analysis actually comprises a
group of related methods, united by the goal of
minimizing some evolutionarily significant

quantity but differing in their underlying evolu-
tionary assumptions. We will now address each
of these methods in turn. The methods are pre-
sented in a logical progression rather than in
chronological order of their introduction into the
literature. In describing the procedures used to
compute the minimum length required by a tree
under a particular optimality criterion, we will
consider a single character (position) in isolation
from the rest. Because of the assumption of inde-
pendence among characters, we can compute the
overall tree length by summing, over all charac-
ters, the lengths required by each individual
character. For the simplest procedures (Fitch and
Wagner parsimony), we provide pencil-and-pa-
per algorithms for computing tree lengths and
determining optimal character-state assign-
ments. Again, we are concerned only with calcu-
lating the length of a single tree, which is taken
as a given; this tree may not be a most-parsimo-
nious arrangement for our example character (or
even over all characters); it is simply a tree that
we wish to evaluate.

Fitch and Wagner Parsimony

These are the simplest parsimony methods, im-
posing no (Fitch) or minimal (Wagner) constraints
on permissible character-state changes. The Wag-
ner method, formalized by Kluge and Farris
(1969) and Farris (1970), assumes that characters
are measured on an interval scale; thus it is ap-
propriate for binary, ordered multistate, and con-
tinuous characters. Fitch (1971b) generalized the
method to allow unordered multistate characters
(e.g., nucleotide and protein sequences). Wagner
parsimony assumes that any transformation from
one character state to another also implies a trans-
formation through any intervening states, as de-
fined by the ordering relationship. Fitch parsi-
mony allows any state to transform directly to
any other state. Both methods permit free re-
versibility; that is, change of character-states in ei-
ther direction is assumed to be equally probable,
and character states may transform from one state
to another and back again. A consequence of re-
versibility is that the tree may be rooted at any
point with no change in the tree length.



To determine the minimum length required
by a given character j under either the Wagner or
Fitch criteria, only a single pass over the tree is re-
quired, proceeding from the tips toward the arbi-
trary root. Computer scientists call this pass a post-
order traversal. Although the computation can be
performed in other ways, we recommend rooting
the tree at one of the terminal taxa, denoted r, as
shown in Figure 2. The algorithm for computing
the length of a strictly bifurcating tree under the
Wagner parsimony criterion then proceeds as fol-
lows (see Swofford and Maddison, 1987, for a
more rigorous presentation).

1. To each terminal node i (including the one at
the root), assign a state set 5; containing the
character state assigned to the corresponding
taxon in the input data matrix (= x;). Initialize
the tree length to zero.

2. Visit an internal node k for which a state set S;
has not been defined but for which the state
sets of k's two immediate descendants has
been defined. Let i and j represent k's two im-
mediate descendants. Assign to k a state set S;
according to the following rules:

2a. If the intersection of the state sets assigned to
nodes i and j is non-empty (S; N S; # @), let k's
state set equal this intersection (i.e., Sy = 5; N 5)).
The intersection can be represented as a closed
interval [a;,by].

2b. Otherwise (5; N S}- = (&), let k’s state set
equal the smallest closed interval [a,bi] contain-
ing an element from each of the state sets
assigned to i and j. Increase the tree length by
bk — A )

3. If node k is located at the basal fork of the tree
(i.e., the immediate descendant of the termi-
nal node placed at the root), the traversal has
been completed; proceed to step 4. Otherwise,
return to step 2.

4. If the state assigned to the terminal node at the
root of the tree (x,) is not contained in the
state set just assigned to the node at the basal
fork of the tree (5), increase the tree length by
the distance from x, to S;. (This distance
equalsay — x, if x,<aorx, — ayif x, > b;.)
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An application of the above algorithm is pre-
sented in Figure 2. We wish to compute the length
of the unrooted tree of Figure 2A. (Although the
more usual situation for molecular data would in-
volve binary rather than multistate characters, we
treat the multistate case to demonstrate the gen-
erality of the algorithm. Binary characters are sim-
ply a special case.) We first re-root the tree at node

A(0)

B(0) D(1)
CcQ) E@3)
(B) B cC D E © B c b E
{0} 2} {1} {3} {0} (2} (1} {3}
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N AN\ /2 NN/
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1V0 o\

0
A A

(D) B C D E

Figure 2 Steps in the algorithm for computing the
length of an ordered character under Wagner parsi-
mony. (A) The unrooted tree and character states. (B)
Tree obtained by rooting at terminal node A and initial
state sets assigned to teminal nodes. (C) State sets com-
puted for interior nodes (bold). (D) Reconstruction ob-
tained according to the algorithm described in the text.
(E) An alternative, equally parsimonious reconstruc-
tion.
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A (although we could have chosen any node),
yielding the rooted tree shown in Figure 2B. Also
shown in Figure 2B are the state sets assigned to
the terminal nodes according to step 1 of the algo-
rithm. Visiting internal node X in the first invoca-
tion of step 2, we observe that Sy N Sc = {0} N {2} =
@, and hence assign the interval [0,2] to Sy,
adding 2 - 0 = 2 to the tree length. Similarly, we
let Sy = [1,3] in the second invocation of step 2,
and add 3 — 1 = 2 to the length, which is now 4. In
the third and final invocation of step 2, we ob-
serve that the intersection Sx N Sy=[0,2] n [1,3] is
not empty, and therefore assign the interval [1,2]
to Sz. The situation as we arrive at step 4 is shown
in Figure 2C. Since x, = 0 is not an element of 57 =
[1,3], we add an additional 1 - 0 = 1 to the length.
Thus, evolution of this character requires a mini-
mum of five steps on our given tree.

The procedure outlined above is sufficient to
obtain the minimal length required by any char-
acter on a given tree. However, it does not actu-
ally assign optimal character states to the hypo-
thetical ancestors (internal nodes) of the tree to
yield a most-parsimonious reconstruction
(MPR). To obtain such a reconstruction we can
make a second pass over the tree, this time pro-
ceeding from the root toward the tips (a preorder
traversal):

5. Visit an internal node k for which an optimal
state assignment x; has not yet been made but
for which such an assignment has been made
to K's immediate ancestor, denoted m. (Note
that the first time this step is invoked, k corre-
sponds to the node at the basal fork of the tree
and m = r, the terminal taxon at the root of the
tree.)

6. Assign to k the state from the state set com-
puted in the first-pass, Sx (= [axbi]), that is
closest to x,,. Specifically, if x,, is contained in
Sk, we let x; = x,,. Otherwise, we let x; = a; if
X < @ OF X = by if x,, > by

7. If all internal nodes have been visited, stop.
Otherwise return to step 1.

Applying steps 5-7 to the example of Figure 2, we
first assign state 1 (the closest state in[1,2] to 0) to
node Z. We then assign state 1 (the closest state in

[0,2] to 1) to node X; likewise we assign state 1
(the closest state in [1,3] to 1) to node Y. The re-
sulting reconstruction is shown in Figure 2D, and
confirms the value of 5 as the minimum length for
this character.

It is important to remember that this method
finds only a single MPR, although others may ex-
ist. For instance, the reconstruction in Figure 2E
also requires 5 steps. Swofford and Maddison
(1987) described an exact algorithm for obtaining
all MPRs for discrete character data under the
Wagner parsimony criterion.

Simple modifications of the above algorithm
provide for the treatment of multistate unordered
characters (e.g., nucleotide sequence positions)
under the Fitch (1971b) parsimony criterion. In
the initial pass (computation of state sets and tree
lengths), modify steps 2 and 4 as follows:

2a’. If the intersection of the state sets assigned to
nodes i and j is non-empty (5; N S§; # D), letk's
state set equal this intersection (i.e., 5¢ = 5; N S5p)-

2b’. Otherwise (5; N §5; = @), let k’s state set
equal the union of the state sets assigned to
nodes i and j (5; v Sj), and increase the tree

length by 1.

4’_ If the state assigned to the terminal node at the
root of the tree (x,) is not contained in the state
set just assigned to the node at the basal fork
of the tree (Sp), increase the tree length by 1.

In order to obtain an MPR, modify step 6 above as
follows:

6. If x,, is contained in the state set assigned to k
in the first-pass (Sy), assign this state to k as
well. Otherwise, arbitrarily assign any state
from S, to k.

An example of the application of the above algo-
rithm is shown in Figure 3. We are interested in
computing the length required by a single charac-
ter on the unrooted tree of Figure 3A. As before,
we re-root the tree arbitrarily at node A, yielding
the tree shown in Figure 3B. The state sets as-
signed to the terminal nodes are indicated on the
figure. Visiting node X in the first invocation of
step 2/, we see that {A} N {C} = @, and hence as-
sign the union {A,C) as the state set 5x and set the
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Figure 3 Steps in the algorithm for computing the
length of an unordered character under Fitch parsi-
mony. (A) The unrooted tree and character states. (B)
Tree obtained by rooting at terminal node A and initial
state sets assigned to teminal nodes. (C) State sets com-
puted for interior nodes (bold). (D) Reconstruction ob-
tained according to the algorithm described in the text.
Branches on which character-state change occur are in-
dicated in bold. (E) An alternative, equally parsimo-
nious reconstruction.

tree length for this character to 1. Moving to node
Y, we assign {A,C} N {A} = {A} to 5y. Finally, since
{A)} N {G} = @, we assign the state set {A,G] to
node Z, again adding 1 to the tree length. Thus, at
the beginning of step 4’, the state sets are as indi-
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cated in Figure 3C. Since x, = C is not an element
of Sz = {A,G}, we add an additional step to the
length, so that a total of 3 steps (nucleotide substi-
tutions) are required on this tree.

If we wish to obtain one of the MPRs, we ob-
serve that the state C taken by the terminal taxon
at the root of the tree is not contained in the set
{A,G] assigned to the node at the first fork, and
we may arbitrarily choose to assign state A to this
node. We then assign state A to node Y as well
(since the state set was a singleton no decision
need be made). Finally, since state A is contained
in node X’s state set {A,C}, we assign it to the
node, yielding the reconstruction shown in Fig-
ure 3D.

As was the case for the ordered character ex-
ample, more than one MPR exists. For example, if
we had chosen to assign state G rather than state
A to node Z, we would have obtained the recon-
struction shown in Figure 3E. Still another MPR
exists, however, in which state C is assigned to all
three internal nodes. That C was a possible state
for node Z was not readily apparent from the
state set {A,G} originally assigned to that node. In
fact, a second pass over the tree is necessary in or-
der to obtain all of the possible state assignments
to each interior node. Fitch (1971b) described one
such method and gave an algorithm for enumer-
ating all of the possible MPRs.

Although all the algorithms described above
are restricted to strictly bifurcating trees, they can
easily be modified to handle multifurcations
(polytomies). W.P. Maddison (1989) reviewed al-
gorithms for obtaining MPRs on polytomous trees
under a variety of evolutionary models, including
the introduction of some novel approaches.

Other Parsimony Variants

Dollo Parsimony

The Wagner and Fitch parsimony criteria are ap-
propriate under the assumption that probabilities
of character change are symmetrical (i.e., the
probability of a transformation from state 0 to
state 1 in some small unit of evolutionary time is
equivalent to that of a change from state 1 to state
0). As discussed above, this assumption is proba-
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Figure 4 Character-state reconstructions demonstrat-
ing Dollo parsimony criterion. Branches on which char-
acter state changes occur are indicated in bold. (A) Most
parsimonious reconstruction if multiple originations of
ctate 1 are allowed. (B) Most parsimonious reconstruc-
tion under Dollo parsimony, in which only a single
origination of state 1 is permitted. (C,D) Reconstruc-
tions obtained under unrooted Dollo model. Either
rooting of the tree implies a minimum of two character
state changes and only a single origination of state 1.

bly unreasonable for restriction-site characters,
since the loss of an existing restriction site is more
probable than a parallel gain of the same site at
any particular location.

Because of this asymmetry, DeBry and Slade
(1985) and others have suggested that the Dollo
parsimony model (Farris, 1977) is more appropri-
ate for restriction-site data. The Dollo parsimony
criterion can be applied to binary or linearly or-
dered multistate characters for which we can rea-
sonably hypothesize an ancestral condition (po-
larity). As for Wagner and Fitch parsimony, the
preferred tree is the one requiring the fewest
steps, but the character-state reconstruction (and

hence the tree length assigned) must be consistent
with the constraint that every derived character
state be uniquely derived. If a hypothetical ances-
tor (a hypothetical taxon to which the assumed
ancestral states for each character have been as-
signed) is included in the analysis, this definition
corresponds to the traditional Dollo model (Far-
ris, 1977): each character state is allowed to origi-
nate only once on the tree, and any required ho-
moplasy takes the form of reversals to a more
ancestral condition (i.e., parallel or convergent
gains of the derived condition are not allowed). In
the context of restriction-site data, each site may
be gained once, with as many parallel losses of
the site being assumed as are necessary to explain
the data. For example, for the tree and character
states shown in Figure 4 and with state 0 (site ab-
sent) assumed to be ancestral, the reconstruction
of Figure 4A, requiring only two steps, is not ac-
ceptable under the Dollo model because two
gains are indicated. Consequently, three steps
would be required under the Dollo criterion (Fig-
ure 4B): a single gain followed by two losses.

Use of the Dollo parsimony criterion does
not require inclusion of a hypothetical ancestor;
it can be applied to unrooted trees as well. Stated
another way, although the Dollo criterion re-
quires specification of character polarity in a uni-
versal sense, it does not require us to know the
state occurring in the most recent ancestor of the
ingroup taxa. Specifically, the unrooted Dollo
model forces us to assign character states to the
interior nodes of the tree such that if a path is
traced from any terminal taxon to any other, a
backward change (from a more derived state to
2 more ancestral state) is never followed by a for-
ward change (from a more ancestral state to a
more derived state). Under this definition, the
position of the root affects neither the assign-
ment of character states to interior nodes nor the
length of the tree. For example, both of the trees
shown in Figures 4C and 4D, which differ only
in the placement of the root, require two steps
under the unrooted Dollo model (assuming that
state 1 is the derived state). Neither tree requires
more than a single origination of state 1. (Note
that in the tree of Figure 4D, the derived state 1is
assumed to be ancestral with respect to the



group ABCD, but derived relative to some more
inclusive group.)

The unrooted Dollo approach is particularly
convenient for restriction-site characters since it
does not require the construction of a hypotheti-
cal ancestor, only the inclusion of one or more
outgroup taxa. If a site is present in some of the
ingroup taxa and in one or more of the outgroup
taxa as well, then the most recent common ances-
tor of the ingroup is assumed to have had the site.
The analysis will then seek to minimize the num-
ber of losses of the site over the full tree (ingroup
and outgroup). If, on the other hand, the site is
found only in some of the ingroup taxa but not in
the outgroup, then the site is assumed to be an-
cestrally absent with respect to the ingroup, and a
single gain will be postulated at an optimal loca-
tion within the ingroup. Remember that the spec-
ification of “site absent” as the ancestral condition
does not imply that the site was absent in the
most recent common ancestor of the ingroup taxa,
only that the site was absent in some, perhaps
quite distant, ancestor.

The drawback to use of Dollo parsimony for
restriction-site characters is demonstrated in Fig-
ure 5. If, despite its unlikelihood, a particular re-
striction site does originate independently in two
lineages (Figure 5A), then the actual number of
evolutionary changes can be drastically overesti-
mated (Figure 5B) due to the strict enforcement of
the requirement for unique originations. This
pathological behavior may occur more often than
the reader might suspect. Suppose one particular
position within the restriction site were less con-
strained than the others, and further suppose that
transition substitutions at this position were much
more likely to occur than transversions. Then it is
easy to imagine that the nucleotide at this position
would, on an evolutionary time scale, toggle be-
tween the two purines (or pyrimidines). The site
would then “blink” on and off, depending on
which base was present at any particular point on
a lineage. If we permitted only a single origina-
tion of the site, the number of losses we would be
forced to postulate could become large.

One way to avoid this problem is to adopt a
“relaxed” Dollo criterion. For example, we might
prefer one gain and two losses to two indepen-
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Figure 5 Demonstration of problems affecting Dollo
parsimony if multiple originations of the derived state
actually occur. (A) “True” tree has two steps due to in-
dependent derivations of state 1. (B) Reconstruction ob-
tained under Dollo parsimony requires 11 steps (one
derivation of state 1 and ten reversals to the ancestral

state 0).

dent gains, but we might prefer two independent
gains to one gain and ten losses. The generalized
parsimony method, discussed later, provides a
mechanism for implementing a relaxed Dollo
model.
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Camin-Sokal Parsimony

The method of Camin and Sokal (1965) was actu-
ally the first discrete-character parsimony ap-
proach to be described. It makes the strongest as-
sumption of any of the methods discussed so far,
namely, that evolution is irreversible.* We men-
tion it here only for the sake of completeness,
since it is highly unlikely that the assumption of
irreversibility could be justified for any type of
molecular data.

Transversion Parsimony

A common observation (e.g., WM. Brown et al.,
1982) is that transition substitutions occur more
frequently than transversions in a given gene. For
some molecules, it might even be argued that tran-
sitions occur so frequently that they quickly de-
generate into noise and should therefore be ig-
nored altogether. A simple method for ignoring
transitions is to re-code the four nucleotides as ei-
ther R (purine; A or G) or ¥ (pyrimidine; C or T).
Standard Wagner parsimony may then be applied
to the resulting binary-coded matrix.

A disadvantage to the complete rejection of
information on transitions is that, while transi-
tions may become saturated over long evolution-
ary distances, they may nonetheless be highly in-
formative with respect to relationships among
closely related taxa. One way around the dilemma
is to assign greater weight to transversions than
transitions, without going so far as to give transi-
tions zero weight, as does transversion parsi-
mony. Generalized parsimony can also be used
for this purpose, as outlined below.

Note that some authors (e.g., Lake, 1987a) use
the term transversion parsimony in a different sense
than we describe here.

Generalized Parsimony

All of the above parsimony variants can be sub-
sumed into a generalized method that assigns a
cost for the transformation of each character state
to the other possible states (Sankoff, 1975; Sankoff
and Rousseau, 1975; see Sankoff and Cedergren,

1983, for a somewhat more consumer-oriented
treatment and note that generalized parsimony is
our term, not theirs). The costs can be represented
as an m-by-m matrix S, where S;; represents the in-
crease in tree length (weight) associated with a
transformation from state i to state j, and m is the
total number of possible states. Three such
weighting matrices, corresponding to the Wagner,
Fitch, and Dollo parsimony criteria, are shown in
Figure 6A—C. An exact, dynamic programming al-
gorithm can be used to determine the minimum
length required on a given tree for any particular
choice of costs and to obtain one or all of the
MPRs that yield this length (Sankoff and Ceder-
gren, 1983); because of the complexity of this al-
gorithm, we will not attempt to describe it here
(but see Swofford and Maddison, 1992, for an in-
troductory presentation).

Unfortunately, the generalized parsimony ap-
proach is much more computationally expensive
than the algorithms described above for certain
special cases (although a new procedure de-
scribed by Wheeler and Nixon, 1995, may provide
a faster approximation). Its advantage lies in its
generality. For instance, S is not required to be
symmetric. Relaxation of this requirement pro-
vides a means of implementing a relaxed Dollo
criterion: by making the cost of a forward trans-
formation greater than that of a backward trans-
formation, we can prefer single-gain, multiple-
loss scenarios until the number of losses becomes
great enough that we are willing to allow inde-
pendent gains. For example, the step matrix
shown in Figure 6D would prefer one gain and
two losses over two gains, but would prefer two
gains over one gain and four losses. Generalized
parsimony can also be used to attach greater im-
portance to transversions than to transitions by
assigning costs such that changes between two
purines or between two pyrimidines receive
lower weight than changes from a purine to a
pyrimidine or vice versa (e.g., Figure 6E).

Perhaps the most troublesome aspect of gen-
eralized parsimony is determining how to choose
the costs for different kinds of transformations.

*Some readers, familiar with “Dollo’s Law of Irreversibility,” may be confused at this point. The Dollo parsimony
model does not assume complete irreversibility, only that a derived character state cannot be lost and then_ .
regained. The Camin-Sokal model does not permit a derived character state to return to the ancestral condition.
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Figure 6 Cost matrices for generalized parsimony. (A)
Cost matrix equivalent to Wagner parsimony (ordered
characters). (B) Cost matrix equivalent to Fitch parsi-
mony (unordered characters). (C) Cost matrix equiva-
lent to Dollo parsimony. M is an arbitrarily large num-
ber, guaranteeing that only one transformation to each
derived state will be permitted. (D) Cost matrix that as-
signs greater weight to gains (0 = 1 changes) than to
losses (1 — 0 changes). (E) Cost matrix that assigns
greater weight to transversions than to transitions.

One approach is to assign weights consistent with
the researcher’s assumptions about the relative
frequency of different kinds of events. As a mat-
ter of general principle, we disagree with those
who argue that a priori weighting of different
kinds of changes introduces an unacceptable level
of subjectivity into the analysis; an assumption of
equal weights is itself a strong assumption. If, for
example, we examined an alignment and ob-
served that of 200 variable positions (columns), 80
contained only A and G, 80 contained only C and
T, and only 40 contained a mixture of purines and
pyrimidines, the conclusion that transitions occur
much more frequently than transversions would
not be controversial. In this case, a transver-
sion:transition weighting of 1:1 would certainly
represent a stronger assumption than a 2:1

Phylogenetic Inference 423

weighting. Even if we have no idea how much
more frequently transitions occur than transver-
sions, a transversion:transition weight such as a
1.1:1 weighting may be desirable. Suppose that
under equal weighting one tree required 5 homo-
plastic transversions and 3 homoplastic transi-
tions, while another tree required 1 homoplastic
transversion and 7 homoplastic transitions.
Whether the “optimal” transversion:transition
weighting is 2:1, 3:1, or 20:1, the tree requiring
only 1 “extra” transversion would be preferable
and would be chosen as superior under the 1.1:1
weighting scheme. Similar arguments can also be
advanced for the use of gain:loss weights other
than 1:1 for restriction sites.

An alternative to assuming a particular set of
costs based on extrinsic criteria is to estimate the
appropriate weights from the data themselves.
Williams and Fitch (1989) discussed methods for
choosing initial weights and for refining them by
jterative improvement. Unfortunately, these meth-
ods may be sensitive to the starting point, a fre-
quent drawback to successive approximation
methods. Iterative approximation of optimal
weights remains an area of active research, and
further developments may be expected in the
near future (for more on this subject see the sec-
tion on “Reliability of Inferred Trees”).

The methods developed by Sankoff and his
colleagues were also designed to construct opti-
mal alignments on a given tree by incorporating
insertion/deletion weights (with insertions of
gaps as appropriate) in addition to the substitu-
tion weights. This strategy is very appealing in
that it effectively merges the problems of align-
ment and tree selection into a single problem; in-
sertions and deletions are treated as events local-
ized to particular branches on the tree in order to
maximize the overall parsimony. The alternative
method, construction of a multiple alignment
prior to the phylogenetic analysis, is vastly infe-
rior, since the topology of the tree cannot be ig-
nored when deciding where to place gaps.

Unfortunately, rigorous application of San-
koff’s method is computationally difficult for
more than three sequences and one interior node.
Sankoff et al. (1976) described an iterative proce-
dure that rigorously aligns within local regions of
a tree (three sequences adjacent to a single interior
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node), sacrificing the guarantee of global optimal-
ity but providing greater tractability. Nanney et al.
(1989) described and programmed a more ap-
proximate, but much faster, procedure that oper-
ates by assuming that lengths of insertions and
deletions are sufficiently small to allow alignment
within a local “window” rather than obtaining a
global alignment for any triplet of sequences.
Hein (1990a,b) and Wheeler and Gladstein (1994)
have developed useful programs for simultane-
ous alignment and tree optimization (see Chapter
9 for details).

Parsimony on Protein Sequences

Because this book does not specifically deal with
amino acid sequencing, our discussion of parsi-
mony methods for treating these sequences will
be brief. Three general procedures have been
used. The first, and simplest, is to minimize the
number of amino acid replacements by using
Fitch parsimony as described above (i.e., each po-
sition in the aligned sequences is a multistate un-
ordered character, of which the possible states are
the 20 possible amino acid residues). This ap-
proach, apparently used first by Eck and Dayhoff
(1966), ignores the genetic code by failing to con-
sider the minimal number of nucleotide substitu-
tions required for the replacement of one amino
acid by another (i.e., some replacements require a
single nucleotide substitution, whereas others re-
quire two or even three substitutions).

Goodman, Moore, and their colleagues devel-
oped a more sophisticated approach (reviewed by
Goodman, 1981) that seeks trees requiring the
fewest number of nucleotide substitutions at the
mRNA level. They produced an algorithm that
generalizes the Fitch parsimony approach to
codons, taking into account the degeneracy of the
genetic code and guaranteeing that one obtains
the minimum number of nucleotide substitutions
required by any given tree. (A highly readable
presentation of the algorithm, including a worked
example, appears in G.W. Moore, 1976; see also
Goodman et al., 1979). A more recent modification
to their algorithm, by J. Czelusniak, permits the
mixture of amino acid and nucleotide sequences
(when available) in the same analysis (Goodman,
1981). Despite its elegance, the Moore—-Good-

man-Czelusniak algorithm may be overkill in the
sense that it pays too much attention to silent sub-
stitutions (e.g., substitutions at third positions that
do not change the corresponding amino acid). If
silent substitutions occur so frequently that infor-
mation from third positions quickly reaches satu-
ration, then these positions would contribute
mainly noise (or worse, systematic error) and
should therefore be ignored. Weighting methods
presumably could be used to minimize the contri-
bution of third positions without ignoring them
entirely. To our knowledge, however, such meth-
ods have not been used.

A third approach, intermediate between the
first two, has been implemented by Felsenstein
(1993) in his PROTPARS program from the
PHYLIP package but has yet be formally de-
scribed in the literature. Unlike the Eck-Dayhoff
approach, it does consider the genetic code, but it
also deviates from the Moore-Goodman-Czelus-
niak method by ignoring silent substitutions. Al-
though ignoring silent substitutions sounds like
extra work, the required bookkeeping is in fact
simplified considerably because the program does
not need to consider all the potential mRNA
codons responsible for a particular amino acid
residue or all of the potential synonymous codon
assignments to the interior nodes. For example,
PROTPARS would assign one step to a change
from lysine to arginine (e.g., AAA — AGA), but
two steps to a change from lysine to proline (e.g.,
AAA — CAA (glutamine) — CCA). Changes such
as phenylalanine to glutamine require three nu-
cleotide substitutions (e.g., AAA = GAA (leucine)
_y GAT (leucine) = GTT) but are counted as only
two steps, since the middle substitution is silent.

One could take Felsenstein’s argument a step
further. Because of the biochemical properties of
the various amino acids, there is often little selec-
tion against changes between amino acids having
similar properties (e-g., between aspartic and glu-
tamic acids). If changes between similar residues
occur very frequently, perhaps we should ignore
them as well (or at least give them less weight).
The generalized parsimony method can be used
to implement this strategy (Marsh et al., 1994),
with the weights derived from the matrices pre-
sented by Dayhoff (1978) or Henikoff and
Henikoff (1992).
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Parsimony on Allozyme Data

The problems with treating allele frequencies or
presence/absence as characters in a phylogenetic
analysis were discussed above (see “Isozyme
Data” in the section “Types of Data”). To clarify
these issues within the context of parsimony
analysis, consider the example in Figure 7. If the
alleles indicated in Figure 7A are scored as present
or absent and then treated as independent charac-
ters, the most parsimonious reconstruction under
Wagner parsimony assigns no alleles to ancestor
Y (Figure 7B), an outcome that most biologists
would find unacceptable. A similar example
could have been constructed using allele frequen-
cies rather than presence/absence, in which the
most parsimonious reconstruction assigned an-
cestral frequencies that summed to a value less
than 1.

].S. Rogers (1984, 1986) and Swofford and
Berlocher (1987) developed methods for minimiz-
ing the total amount of frequency change on a
given tree, subject to the constraint that the array
of allele frequencies (for a particular locus) as-
signed to each interior node of the tree must exist
in “allele frequency space” (a hyperplane in
which the sum of the frequencies for all alleles is
1). These methods differ only in the choice of dis-

Figure 7 Demonstration of one problem with “inde-
pendent alleles” coding. (A) Allele frequencies and data
matrix resulting from presence/absence coding. (B) The
most parsimonious reconstruction for the tree indicated
assigns no alleles to ancestor Y.

tances used for measuring branch lengths. Rogers’
original method (1984) was derived for his earlier
(1972) distance measure; he later extended it to a
variety of other (mostly Euclidean) distance mea-
sures. His procedure uses the optimization tech-
nique of “hyperboloid approximation,” which re-
quires that the distance measure be representable
as a differentiable function. Swofford -and
Berlocher (1987) argued for the superiority of the
Manhattan metric and were forced to solve the
problem via linear programming.

Methods that use allele frequencies rather
than presence/absence are often criticized on the
grounds that the allele frequencies are too easily
modified by random drift and /or selection, and
therefore do not provide reliable information for
phylogenetic analysis (e.g., Mickevich and John-
son, 1976). In some cases, allele frequencies are
known to vary temporally over the span of a few
years, and this observation also has been used to
question their relevance to phylogeny (Crother,
1990). We would argue, however, that even if the
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information contained in allele frequencies is
somewhat unreliable, the frequencies at least pro-
vide a way to weight the presence ot absence of
particular alleles. For example, if an allele were
detected sporadically in the taxa being analyzed,
but never at frequencies higher than 0.04, we
would be hesitant to attach much importance to
the shared presence of that allele in some of the
taxa; it could easily be present in other taxa at
similar frequencies, but missed due to sampling
error. On the other hand, an allele that is either
fixed or nearly fixed whenever it occurs is proba-
bly more indicative of relationship. It should be
emphasized that adopting a cutoff frequency (typ-
jcally 0.05) does not solve the problem unless a re-
searcher is willing to assert that an allele known
to occur in a sample at an estimated frequency of,
say, 0.04 is “not present.”

Although the Rogers and the Swofford—
Berlocher methods are conceptually simple, the
computer algorithms used to implement them are
quite complex; the interested reader should refer
to the original papers for details. These methods
are also much slower than other parsimony meth-
ods. However, Berlocher and Swofford (1996; see
Swofford, 1996) have developed a fast approxi-
mation using generalized parsimony on single-lo-
cus Manhattan distance matrices (for a given tree,
this algorithm obtains an exact solution to Swof-
ford and Berlocher’s 1987 MANOB criterion).

OPTIMALITY CRITERIA II:
METHODS BASED ON MODELS
OF EVOLUTIONARY CHANGE

The Utility of Models

Although the parsimony methods described
above are based on speciﬁc optimality criteria,
they do not require explicit models of evolution-

*An alternative position is that parsimony is required as

ary change. Considerable disagreement exists as
to whether the #model-free” nature of parsimony
is an advantage or a disadvantage. Regardless of
where one stands on this issue, however, one
thing is clear: parsimony does make assumptions,
and violation of these assumptions can lead to
problems. The difficulty lies in stating precisely
what the assumptions are. At a minimum, accep-
tance of an optimal tree under the parsimony cri-
terion requires one to assume that conditions that
can cause parsimony to estimate an incorrect tree
are unlikely to have occurred.* The ability of an
estimation method to converge to a true value (in
this case the correct tree) as more data are accu-
mulated is known as consistency. Felsenstein
(1978a) showed that parsimony methods can
make inconsistent estimates of the true phylogeny
under one simple evolutionary model.

Parsimony and Inconsistency

Examination of the conditions under which parsi-
mony? is an inconsistent estimator will be helpful
in understanding the usefulness of explicit evolu-
tionary models. We will first present a non-tech-
nical examination of the problem; in a later sec-
tion (“Model-Based Corrections for Character
Data: Hadamard Conjugation”) we will look at
the issue more rigorously. Suppose that the true
phylogeny for a group of four taxa is as shown in
Figure 8A, where the lengths of the branches in-
dicate the relative expected amount of evolution-
ary change along each branch under some model
of evolution (e.g., the model of Jukes and Cantor,
1969). For whatever reason, the rate of evolution
has been accelerated in the peripheral branches
leading to taxa 1 and 4. Each nucleotide position
will have some ancestral nudcleotide (e.g., A in Fig-
ure 8A). Suppose that the short branches are so
short that there are essentially no changes along
the lineages leading to taxa 2 and 3. One of four
possible classes of nucleotide patterns will then

a method of scientific inquiry regardless of any considera-

tions about whether it is more or less likely to recover the true phylogeny than other methods. Some proponents of
this view hold that since the truth is essentially unknowable, we should ~bandon the search for it and simply

choose the most parsimonious solution for its own sake. We do not subscribe to this position.
phylogeny may be “unknowable,” it can nonetheless be estimated, and we view phylogenet

that end rather than an end in themselves.

Although the true
ic methods as means to

tParsimony in the traditional sense, i.e., “yncorrected parsimony”'; see the end of this section.
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Figure 8 Demonstration of the potential inconsistency
of parsimony methods. (A) Hypothetical four-taxon
tree containing two long peripheral branches, with all
other branches being very short. (B) Unrooted equiva-
Jent for the tree shown in (A). (C) Incorrect tree selected
by maximum parsimony. See text.

result from changes along the lineages leading to
taxa 1 and 4. In patterns of type ], taxa 1 and 4
both retain the ancestral nucleotide, so the posi-
tion is constant and therefore uninformative un-
der the parsimony criterion. (Note that the obser-
vation of pattern I does not imply that no
substitutions have occurred—only that the nu-
dleotides observed in the terminal taxa are identi-
cal at the tips of the tree, regardless of the number
of changes that have actually occurred.) Patterns
of types II (a change along only one of the two
long branches) and I1I (a change to a different nu-
cleotide along each long branch) are likewise un-
informative, as one can explain each pattern with
a single change (pattern II) or two changes (pat-
tern I1I) along the peripheral branches of any of
the three possible unrooted trees. Only patterns of
type IV are informative under parsimony. Unfor-

*Felsenstein’s results have often been criticized (e.g., Farris,
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tunately, this pattern supports an incorrect tree
(Figure 8C); it is actually misinformative about
evolutionary relationships. Patterns that support
the true tree (Figure 8B) will occur only rarely, be-
cause they require an unlikely change along the
central branch (or, even less likely, two parallel
changes along the long and short branches on the
same side of the tree).

Felsenstein (1978a) called the behavior of par-
simony in situations like that shown in Figure 8
“positively misleading” because as the number of
characters (e.g., sequence length) increases, we be-
come more and more certain to infer an incorrect
tree. Stated another way, when we are in the
Felsenstein zone (of inconsistency), the only hope
of getting the correct tree is by sampling few
enough characters that we may be lucky enough
to obtain more of the character patterns favoring
the true tree than of the more probable character
patterns favoring the wrong tree. As we will see
below, methods that attempt to account for unob-
served as well as observed substitutions (maxi-
mum likelihood and distance methods using
“multiple-hit” corrections) will not be inconsistent
under this model and will estimate the correct tree
as long as enough data are available to overcome
sampling error.* Although in this case the incon-
sistency is due to strongly unequal rates of change
along different branches, Hendy and Penny (1989)
demonstrated other scenarios that lead to incon-
sistency even with equal rates of change through-
out the tree (i.e., a molecular clock) and suggested
the term “long-branch attraction” for this general
phenomenon. i

Steel et al. (1993a) have emphasized that par-
simony is a criterion for choosing an optimal tree
for a data set, whether the data are the original
data or some transformation of those data. They
show that, for conditions such as those shown
above, parsimony can still make a consistent esti-
mate of the phylogeny if the data are first cor-
rected for unobserved substitutions using a
Hadamard conjugation (see below). The correc-

1983, 1986b) because they are based on unrealistic and

restrictive models of the evolutionary process. This criticism is unjustified, however, as the point could equally well
be made with much more general and believable models, but requiring more complex mathematics. Farris's (1983,
1986b) point that a maximum likelihood method will guarantee consistency only if evolution proceeds according to
the assumed model is of course true, a point to which we will return later.
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tion formally involves transformation of the orig-
inal data matrix to a new data matrix containing
9T-1 characters (in the case of two states), each
with an associated weight. Weighted parsimony
analysis of this new data set will not be inconsis-
tent as long as the other assumptions of the model
are satisfied (e.g., equal rates of change at each
site). In extreme cases, this new data set may con-
tain highly weighted character patterns that were
completely absent from the original data set, so
the method is quite different from the conven-
tional usage of the term parsimorny. Consequently,
we will use parsimony to mean uncorrected parsi-
mony unless otherwise indicated.

Differences in Perspective between Parsimony
and Likelihood

Even under conditions where parsimony is con-
sistent, alternative methods that incorporate mod-
els of evolutionary change can make more effec-
tive use of the data, as demonstrated in the
example of Figure 9. The tips of the tree in Figure
9A are labeled by the nucleotides observed at one
sequence position. (Although the tree is shown as
a rooted tree, it is formally unrooted, with the path
between ancestor 1 and the outgroup treated as a
single branch.) As a preliminary step to our formal
introduction to maximum likelihood, it will be in-
structive to examine (qualitatively) the perspec-
tives of parsimony and maximum likelihood with
respect to the identity of the corresponding nu-
cleotide in ancestor 1 of this tree. Using the meth-
ods of Fitch parsimony described above, we find
that the most parsimonious state assignment for
ancestor 2 is an A (an obvious choice, as all of an-
cestor 2’s descendants possess A as well). Thus,
ancestor 1 has given rise to a lineage with an A
and a lineage with a C. It is also related to a lin-
eage (leading to the outgroup) with a G. Assign-
ment of any one of these three nucleotides to an-
cestor 1 would be equally parsimonious, with each
reconstruction explaining all of the tip nucleotides
at this position with exactly two changes. (If an-
cestor 1 had a T at this position, three character-
state changes would be required.) Consequently, a
new sequence with a C could be inserted equally
parsimoniously (with respect to this position) into
branches ¢, B, or yof the tree (Figure 9B-D). More
generally, because adding a sequence withan A to
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Figure9 Example used to show difference in perspec-
tive between parsimony and likelihood methods. (A)
Hypothetical tree with branch lengths drawn propor-
tionally to expected number of substitutions, labeled by
base observed at a particular site. (B,C,D) Insertion of a
new taxon containing a C at the site of interest to
branches o, § and ¥, respectively, of the tree shown in
(A).

any branch of the tree would require no additional
steps and adding a sequence with a T would re-
quire a single additional step for every branch, this
sequence position would be uninformative re-
garding the placement of a sequence with an A or
a T. This position would predispose a lineage con-
taining only a C or a G to originate from branches
a, B, or 7, because connecting such a lineage any-
where in the subtree descending from ancestor 2
would entail an extra nucleotide substitution.
Now consider the maximum likelihood per-
spective. In maximum likelihood estimation, we
choose the hypothesis that maximizes the proba-
bility of observing the data we have obtained (i.e.,
the tip sequences). To calculate this probability,
we need a model of evolutionary change. For
now, suppose that the rate of substitution from
any nucleotide to any other nucleotide is the same
for all nucleotide pairs, and that the expected
aumber of such substitutions along any one
branch is a function of this substitution rate and
the length of the branch in evolutionary time.
(This is an oversimplified version of the Jukes-
Cantor model of nucleotide sequence change, dis-



cussed in more detail below.) For the moment,
also assume that the substitution rate is the same
throughout the tree (we will see later that this as-
sumption is not necessary; it merely allows us to
think of branch lengths as amounts of evolution-
ary time). The observation that all eight descen-
dants of ancestor 2 have nucleotide A is most con-
sistent with change being rare, so postulated
histories with fewer changes are more plausible
than histories with more changes. Thus, from a
maximum likelihood perspective, ancestor 2
would have an A in those histories (ancestral state
reconstructions) having the highest probability of
giving rise to the observed nucleotides. Although
histories in which ancestor 2 had a C, G, or T
would also contribute to the overall probability of
the specified tree having generated the observed
data, if all branches in the subtree were very short,
histories with an A at ancestor 2 would contribute
the vast majority of the total probability. This is as
close as maximum likelihood gets to saying “an-
cestor 2 had an A.”

We now move to ancestor 1. The branches
connected to this ancestor lead to ancestor 2
(probably an A) and to sequences known to pos-
sess a C and a G (the outgroup), respectively. Ig-
noring the G for the moment, let us consider
whether ancestor 1 is more likely to have pos-
sessed an A or a C, given the topology of the tree
and the nucleotides found in the tip sequences. If
ancestor 2 indeed possessed an A as expected, at
least one change must have occurred along the
path between ancestor 2 and the tip having a C
(i.e., branches & and f). Because branch lengths
represent the expected number of character-state
changes along a branch, when a branch is short,
there is a relatively low probability of a single
change occurring along that branch, and an al-
most negligible probability of more than one
change. Thus, given that a character change
(probably) occurred somewhere along branches
or B, it is far more likely to have occurred along
the long branch f than the short branch ¢. Thus,
ancestor 1 is much more likely to have possessed
an A than a C. Remember, however, that the esti-
mate of A at ancestor 1 is a probabilistic state-
ment. When the same configuration of tip states
arises at different sites, the nucleotide found in the
actual ancestor will usually be an A, but it would
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sometimes be a C—and occasionally it would
evenbeaGoraT

Returning our attention to the full tree, we
know that at least two changes must have oc-
curred, and since change is rare in this example,
histories with three or more changes are less
likely than those with only two changes. But on
which two of the three branches (a, §, or P are
the changes most likely to have occurred? Be-
cause branch « is so short, it is much more likely
that the two changes have occurred on branches
B and ythan on any pair of branches involving
branch «. Therefore, histories with pn A in ances-
tor 1 are more likely than others of having gener-
ated the observed data, and due to the greater
length of branch ¥, histories with a C in ancestor 1
are more likely than are those with a G. It seems
extremely unlikely under our model that ances-
tor 1 would have possessed a T. Thus, we obtain
a clear ordering of preferences for all residues. An
important practical consequence is that, unlike
parsimony, this sequence position would be in-
formative with respect to the placement of a new
sequence containing a C at the site, biasing the
decision toward connecting this new sequence to
branch g (Figure 9C).

It is important to remember that the only rea-
son for the appropriate predisposition toward tree
9C is the short length of branch @ and the low
overall rate of change. In this case, an improbable
substitution along branch ais avoided by placing
the change along the branch leading to the tips
with nucleotide C in Figure 9C. For either of the
trees of Figure 9B and 9D, avoiding a substitution
along the original branch a would require parallel
A — C changes along the lineages terminating at
taxa possessing nucleotide C. These parallelisms
would be improbable events if the rate of change
is low, but they become more probable as rates in-
crease. Thus, as branch & becomes longer and the
rates of change grow faster, the preference for tree
9C will decrease.

In summary, whereas parsimony ignores in-
formation on branch lengths when evaluating a
tree, maximum likelihood considers that changes
are more likely along long branches than short
ones, and estimation of branch lengths is an im-
portant component of the method. This difference
explains the consistency of maximum likelihood
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under many situations in which parsimony is in-
consistent. In the example of Figure 8, maximum
likelihood will not be fooled by the “misinforma-
tive” pattern IV, because this pattern is very likely
to occur even on the true tree. Distance methods
that adequately account for unobserved substitu-
tions will also succeed in this case, although they
tend to be less efficient, requiring more data to
achieve the same level of accuracy (e.g., see Hillis
et al.,, 1994b; Kuhner and Felsenstein, 1994;
Huelsenbeck, 1995a,b).

Maximum Likelihood Methods

Maximum likelihood methods of phylogenetic in-
ference evaluate a hypothesis about evolutionary
history in terms of the probability that a proposed
model of the evolutionary process and the hy-
pothesized history would give rise to the ob-
served data. It is conjectured that a history with a
higher probability of giving rise to the current
state of affairs is a preferable hypothesis to one
with a lower probability of reaching the observed
state. Maximum likelihood estimation was first
used in phylogenetic inference by Cavalli-Sforza
and Edwards (1967). However, because they did
not use sequence data, this work remained rela-
tively obscure. Felsenstein (19812, 1993) brought
the maximum likelihood framework to nu-
cleotide-based phylogenetic inference. Later, max-
imum likelihood was applied to amino acid se-
quence data as well (Kishino et al., 1990; Adachi
and Hasegawa, 1992).

In addition to its consistency properties, max-
imum likelihood is useful because it often yields
estimates that have lower variance than other
methods (i.e., it is frequently the estimation
method least affected by sampling error). It also
tends to be robust to many violations of the as-
sumptions used in its models. Part of its power in
this respect is that many models of sequence evo-
lution that assume identical distributions across
sites can safely assume that the actual substitution
processes taking place at different sites have
much in common, even if they are not exactly
identical. Consequently, the major components
determining the evolution of sequences can be de-
scribed by just a few parameters. The overall re-
sult of both improved compensation for superim-

posed changes and of sampling variance is that
even with very short sequences, maximum likeli-
hood tree inference tends to outperform alterna-
tive methods (e.g. parsimony or additive dis-
tances) when evaluated under many models of
sequence evolution (see, e.g., Hasegawa and Fuji-
wara, 1993; Kuhner and Felsenstein, 1994;
Huelsenbeck, 1995a).

Several areas of biological research, notably ge-
netic mapping and clinical testing, routinely use
maximum likelihood methods for testing hypothe-
ses. However, the perceived and actual complexi-
ties of obtaining maximum likelihood solutions to
problems that involve numerous alternative hy-
potheses has inhibited the more general use of
these techniques. The following discussion at-
tempts to outline the elements of a maximum like-
lihood formation of phylogenetic inference. For ad-
ditional perspective, Goldman (1990) provides a
very accessible introduction to these concepts.

Objective

Phylogenetic analysis seeks to infer the history (or
set of histories) that are most consistent with a set
of observed data. In the present case, the data are
observed nucleotide (or protein) sequences; the
unknowns are the branching order and branch
lengths of the tree. To apply a maximum likeli-
hood approach, a concrete model of the evolu-
tionary process that accounts for the conversion
of one sequence into another must be specified.
This model may be fully defined; alternatively, it
may contain many parameters that are to be esti-
mated from the data. A maximum likelihood ap-
proach to phylogenetic inference evaluates the
probability that the chosen evolutionary model
will have generated the observed sequences (the
probability of the data under the model); phylo-
genies are then inferred by finding those trees that
yield the highest likelihoods.

The basic principles involved in calculating
the likelihood of a tree are introduced in Figure
10. Figure 10A shows a set of aligned nucleotide
sequences for four taxa. Suppose we want to
evaluate the likelihood of the unrooted tree
shown in Figure 10B; that is, what is the proba-
bility that this tree could have generated the data
of Figure 10A under our chosen model? Because
most of the models currently used are time-re-
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versible, the likelihood of the tree is generally in-
dependent of the location of the root. It is conve-
nient to root the tree at an arbitrary internal node
(e.g., Figure 10C).

Under the assumption that nucleotide sites
evolve independently, we can calculate the likeli-
hood for each site separately, and combine the
likelihoods into a total value at the end. To calcu-
late the likelihood for some site j, we must con-
sider all of the possible scenarios by which the tip
sequences could have evolved. Obviously, some
of these scenarios are much more plausible than
others, but every scenario has at least some prob-
ability of generating any pattern of observed nu-
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Figure 10 Overview of the calculation of the likeli-
hood of a tree. (A) Hypothetical sequence alignment.
(B) An unrooted tree for the four taxa whose sequences
appear in (A). (C) Tree after rooting at an arbitrary in-
ternal node. (D) The likelihood for a particular site is
the sum of the probabilities of every possible recon-
struction of ancestral states given some model of base
substitution. (E) The likelihood of the full tree is the
product of the likelihoods at each site. (F) The likeli-
hood is usually evaluated by summing the log of the
likelihoods at each site, and reported as the log likeli-
hood of the full tree.

cleotides. More specifically, for any given site, the
node at the root of Figure 10C might have pos-
sessed an A, a C, a T, or a G. For each of these pos-
sibilities, the other internal node might also have
possessed any of the four nucleotides. Thus, there
are 4 x 4 = 16 possibilities to consider. Since any
one of these scenarios could have led to the nu-
cleotide configuration at the tips of the tree, we
must calculate the probability of each and sum
them to obtain the total probability for each site j.
This calculation is illustrated schematically in Fig-
ure 10D. Because we assume a Markov model
(see below), we assume that changes along differ-
ent branches are independent. Thus, the probabil-
ity of any single scenario is equal to the product
of the probabilities of the changes required by that
scenario. For instance, the probability of the sce-
nario represented by the first term of Figure 10D
is equal to the prior probability that the nucleotide
at node 6 is an A (typically 1/4, or the average fre-
quency of A in the original sequences, depending
on the specifics of the model) times the probabil-
ity of retaining an A along the branch leading
from node 6 to node 5, times the probability of an
A — C change along the peripheral branch lead-
ing to tip 1, and so on.

Having calculated the likelihoods at each site,
the joint probability that the tree and model con-
fer upon all sites is computed as the product of
the individual-site likelihoods (Figure 10E). Be-
cause the probability of any single observation is
an extremely small number (much too small to
represent using standard floating-point represen-
tations on a computer), we almost always evalu-
ate the log of the likelihood instead, so the proba-
bilities are accumulated as the sum of the logs of
the single-site likelihoods (Figure 10F).
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Models of Sequence Evolution

The critical element missing from the above overview is how the probabilities of
the various changes are calculated. These probabilities depend on several as-
sumptions about the process of nucleotide substitution, which define a substitu-
tion model. We will restrict our attention here to Markov models, in which the
probability of a change from state i to state j at a given site does not depend on the
history of the site prior to its possession of state i. For example, if a sequence po-
sition has base A at some time #, the probability that it will have base T at a later
time £, depends only on the fact that it has base A at fo; knowing that it had state
C at some time prior to f, would be irrelevant to the probability. We will also as-
sume that the substitution probabilities do not change in different parts of the
tree (i.e., that the evolutionary mechanisms responsible for sequence change con-
stitute a homogeneous Markov process). The use of Markov processes to model
nucleotide substitution has been discussed by Felsenstein (1981a), Lanave et al.
(1984), Tavaré (1986), Barry and Hartigan (1 987a,b), Kishino and Hasegawa
(1990), Rodriguez et al. (1990), and Zharkikh (1 994), among others.

The mathematical expression of a substitution model is a table of rates (sub-
stitutions per site per unit evolutionary distance) at which each nucleotide is re-
placed by each alternative nucleotide. For DNA sequences, these rates can be ex-
pressed as a 4 X 4 instantaneous rate matrix, Q, in which each element Q;;
represents the rate of change from base i to base j during some infinitesimal time
period dt. The most general form of this matrix is

—ulamc +brg +cmr) uarc pbmg MCTEy

Q- HQT A —(gm, +dmg +eny) pdrg pery

B pthmy Hre —phm, + i + fror) iy
HITC, pkre e —u(in, +kme +1mg)

where the rows (and columns) correspond to the bases A, C, G, and T, respec-
tively. The factor p represents the mean instantaneous substitution rate. This
mean rate is modified by the relative rate parameters 4, b, c, ..., 1, which corre-
spond to each possible transformation from one base to a different base. The
product of a relative rate parameter and the mean instantaneous substitution rate
constitutes a rate parameter. The remaining parameters, 7, 7, %G, and 7, are fre-
quency parameters that correspond to the frequencies of the bases A,C,G,and T,
respectively (Z. Yang, 1994a). We assume that these frequencies remain constant
over time (i.e., they are always at equilibrium), and that the rate of change to each
base is proportional to the equilibrium frequency but independent of the identity
of the starting base. The diagonal elements of Q are always chosen so that the el-
ements in the corresponding row sum to zero. It is sometimes convenient to de-
compose Q into two matrices R and IT, where

(3)



Phylogenetic Inference

— pa pb pc
R:ug_ﬂdﬂe
ph o — Hf
wouk opl —
and
ny, O 0 O
H:():rco 0

OOnGO
0 0 0 mp

The off-diagonal elements of Q are then equal to the off-diagonal elements of the
matrix product RIJ, and the diagonal elements of Q are once again set to the neg-
ative of the sum of the off-diagonal elements for the corresponding row. Analo-
gous matrices can be defined for protein sequence data, except that there are 20
states rather than 4.

Almost all of the DNA substitution models proposed to date are special cases
of matrix (3). It is usually assumed that the overall rate of change from base i to
base j in a given length of time is the same as the rate of change from base j to
base i. Such models are said to be time-reversible. This corresponds to the rate
parameter restrictions g =a,h=b,i=¢, j=d k=g¢ and I = f. One byproduct of
time reversibility is that the likelihood of a tree generally does not depend on how
the tree is rooted. Consequently, as for most of the parsimony methods discussed
above, maximum likelihood estimation is usually limited to the inference of un-
rooted trees, and other assumptions must be invoked to convert an unrooted tree
into a rooted one. Although it is possible to relax the time-reversibility assump-
tion, this relaxation introduces additional computational complications, includ-
ing the need to consider rooted trees. Thus, we will only consider symmetric R

matrices of the form

— pa pb pe
R:m—udpe
pb pd — pf
pc pe pf —

The most general time-reversible model (GTR) is then represented by

—plame + brg + cnty) parc pbr HCTey
0- HAT, —plar, +dmg +eny) udrme 172
pbr, pdrm —ubr, +dme + frey) U

HCTT pHeme pfre —pler, +eme + frg)

433

@



434 Chapter 11 | Swofford, Olsen, Waddell & Hillis

3 substitution types
(transversions, 2 transition classes)

TN

2 substitution types
(transitions vs. transversions)

v
HKY85
Fg4

Single substitution type

v

F81

Equal base frequencies

Figure 11 Relationship between special cases of the
general time-reversible family of substitution models.
‘Arrow labels indicate restrictions that convert a more
general model to a more specific one. Model abbrevia-
tions: F81, model of Felsenstein, 1981a (equivalent to
the “equal input” model of Tajima and Nei, 1982); F84,
model used in versions 2.6 and later of PHYLIP (Felsen-

Equal base
frequencies

Equal base frequencies

SYM

3 substitution types
(transitions, 2 transversion
classes)

2 substitution types
(transitions vs. transversions)

Y

K2P

Single substitution type

eral time-reversible (Lanave et al., 1984; Tavaré, 1986;
Rodriguez et al., 1990); HKY85, Hasegawa-Kishino-
Yano model (Hasegawa et al., 1985b); JC, Jukes and
Cantor (1969) model; K2P, Kimura (1980) two-parame-
ter model; K3ST, Kimura (1981) three-substitution-type
model; SYM, model described by Zharkikh (1994); TtN,
Tamura and Nei (1993) model.

stein, 1993; Kishino and Hasegawa, 1989); GTR, Gen-

(Lanave et al., 1984; Tavaré, 1986; Barry and Hartigan, 1987b; Rodriguez et al.,
1990). Most of the remaining models commonly used either for maximum likeli-
hood tree inference or estimation of pairwise evolutionary distances can be ob-
tained by restricting the parameters in matrix (4), as shown in Figure 11. For in-
stance, if the substitution types are divided into transversions, transitions
between purines, and transitions between pyrimidines, we obtain the model of
Tamura and Nei (1993; TrN) by requiring that @ = ¢ = d = f. Similarly, we can ob-
tain Kimura’s (1981) three-substitution-type (K3ST) model by requiring that all
bases occur in equal frequency (74 = e = g = oy = 0.25) and dividing the substi-
tution types into transitions (b =€), A <> T or C <> G transversions (¢ = d), and
A < C or G « T transversions (a = f). Zharkikh (1994) described a model (5YM)
that is equivalent to GTR except that it assumes equal base frequencies. Any other
restriction of the relative rates from the general time-reversible model (e.g.,a = ¢,
e = f) is possible; all such models are also time-reversible.

Further restrictions on the parameters in matrix (4) lead to more familiar
models. If we assume that the equilibrium frequencies of all bases are the same
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(Ma=Tc=Ng=Tr= 0.25) and that all substitutions occur at the samerate @=b=
c=d=e=f=1,the model reduces to that of Jukes and Cantor JOo) (1969):
2, 1 L 1
o T
o-| ## T2 4F 1
1 1. 2y X
-l A 4
rC G G

The base frequency and substitution rate are typically combined into a single pa-
rameter o= /4, leading to the simpler form:

Kimura’s (1980) two-parameter model (K2P) takes into account the common ob-
servation that transitions and transversions occur at different rates, but still as-
sumes equal base frequencies. Thus weseta =c=d =f=1and b=e= xand ob-
tain

1 1 1 1
—Z};(K+2) yia THE T
1 1 1
e aH — g HE+2) Tk THK
Tux g —gute+d T
1 1 1 1
e i H  TgpErD

Letting the transition rate &= k/4 and the transversion rate B = 11/4, the above
can be rewritten as

-a-2 B o B
p -w-28 B o
o B -0 —2p B
B o B —a-2B

Q:

Note that k= ¢/ B represents the transition bias. When x = 1, there is no pref-
erence for transitions and the model reduces to the JC model. However, because
there are twice as many kinds of transversions as transitions, the expected transi-
tion:transversion ratio is 1:2. Similarly, if ¥ =4, we would then expect twice as
many transitions as transversions.
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The K2P model can easily be generalized to allow unequal equilibrium base
frequencies (Hasegawa et al., 1985b). The instantaneous rate matrix for this model

(HKY85) is then given by

"‘#(mc; + ﬂY) HTt- MK ATty
0= KTty —pi{erey + ) Hitg HKTCr (5)
HKTC s HTtc _-u(mA * ”Y) HTer
LT, KT YT —p(Kmc + o)

where a = l, B= K, Tr = s + TG, and my = 7ic + 7r. This corresponds to the GTR
model with the constraints @ = ¢ = d=f=landb=e=x The JC model can like-
wise be generalized to allow for unequal base frequencies (Felsenstein, 1981a; the
F81 model) by setting x=11in matrix (5) or, equivalently, requiring thata=b=c=
d=e=f=1inmatrix(4):

—pilmy +7G) UTC T JT7,
0= T —plrg + 7p) JIE e UTT ©)
HTp S —plry + 7p) prr
N prec e —plrg +72)

This model was also described as the “equal input” model by Tajima and Nei
(1982).

Felsenstein (1984) used a different method to accommodate unequal base fre-
quencies in a two-parameter model (the F84 model, formally described in Kishino
and Hasegawa, 1989). The F84 model divides the substitution process into two
components: a general substitution rate capable of producing all types of substi-
tutions, and a within-group substitution rate that produces only transitions. The
instantaneous rate matrix for the F84 model can be obtained from matrix (4) by
settinga=c=d=f=1b= (1 + K/mp), and e = (1 + K/ 7y

o HTte urg(1+K]f 7x) Hifty
0= [N = HTtg prr(1+ K/ ry)
e (1+ K/ ) 7728 - iz,
JTEN pr(1+K/my) U —

where K is the parameter determining the transition:transversion ratio, 7r = % +
g, My = fic + 71, and the diagonal elements are set to the negative of the sum of
the off-diagonal elements in the corresponding row. The elements of the above
matrix corresponding to transitions each have two components, because transi-
tions can occur due to either the general substitution rate or the within-group
rate. When K = 0, this model collapses to the F81 model. As K increases above
zero, transitions occur more and more frequently relative to transversions.



Calculating Change Probabilities
The instantaneous rate matrix
nucleotides per instant of time
the probabilities of change from any
The substitution probability matrix*

P(t)= ¢

(e.g., Cox and Miller, 1977; Hasegawa et al., 1985b;
tial can be evaluated by decomposing the

Q specifies the rates of chan
dt, but in order to calculate likelihoods we need
state to any other along a branch of length £.
is calculated as

instantaneous r

Z.Yang,
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ge between pairs of
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eigenvalues and eigenvectors (we omit the details of how this is done, but see

Lewis et al., 1996, for an introductory explanation o
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calculation of the elements of the substitution probability matrix. For ex-
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The full substitution probability matrix is then giv
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Substitution probabilities for some other DNA models are as

al., 1996):

“We refer to this matrix as the substitution probability

Gi=j)
G#], transition)

(i+j; transversion)

en by:

f the techniques used). For
allowing direct an-

follows (see Lewis et

matrix rather than the more traditional

transition probability matrix to avoid confusion with “transition” in the sense of a change

between two purines or between two pyrimidines.
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L NET R
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l

where A =1 +TI; (x— 1) for the HKY85 model and A = K + 1 for the F84 model,
with [; = 7a + 7G if base j is a purine (A or G) and IT; = mic + 7t if base jis a

yrimidine (C or T). Substitution probabilities for the remaining models can be
calculated by numerical evaluation of the eigenvalues and eigenvectors of Q us-
ing standard algorithms (Z. Yang, 1994a; Lewis et al., 1996).

CHANGE PROBABILITIES FOR PROTEIN SEQUENCE DATA The techniques described
above for DNA sequence data can be applied to protein sequences as well; the
difficulty lies in specifying an appropriate model of amino acid replacement.
The simplest model is a Poisson model, analogous to the JC model for DNA
sequences but extended to 20 states (e.g., Kishino et al., 1990), which assumes
that all changes between amino acids occur at the same rate and that the equi-
Jibrium frequencies of all amino acids are equal. The change probabilities for
this model are given by:

LB =}

Poisson Pt.].(t) - 210 210 Y
50 20° ((E3)]

The assumption of equal amino acid frequencies is clearly unreasonable for pro-
tein sequence data. If substitution rates are still assumed to be equal, an analog to
the Felsenstein (1981a) model would have the same basic form as the instanta-
neous rate matrix of (6), but with 20 states instead of 4. This model has been
called the proportional model by Hasegawa and Fujiwara (1993). The corre-
sponding change probabilities are the same as (7):
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where 7; now represents amino acid frequencies rather than base frequencies. Al-
though this model is preferable to the Poisson model, it still assumes that the rel-
ative frequencies of the amino acids are constant across sites. This assumption is
clearly violated as well (e.g., hydrophobic amino acids predominate in some re-
gions of a protein, while hydrophilic amino acids predominate in others).

A large body of empirical evidence demonstrates that an amino acid is more
likely to be replaced by a physicochemically similar amino acid than would be
predicted by an equal-change-probability model (Dayhoff et al., 1978). Kishino et
al. (1990) were able to derive a maximum likelihood method analogous to the
general time-reversible model for DNA sequences by using an instantaneous rate
matrix derived from Dayhoff et al.’s (1978) empirical substitution matrix. This
model has been implemented as the Dayhoff model in the PROTML program of
the MOLPHY package (Adachi and Hasegawa, 1992). More recently, a model
(JTT) based on the updated empirical substitution matrix of D.T. Jones et al. (1992)
has been added to PROTML; preliminary evidence indicates that this modifica-
tion provides a better model for the evolution of diverse proteins than the Day-
hoff model (Cao et al., 1994).

Protein-coding DNA sequences can be analyzed using either the original
DNA sequences or the translated proteins (with some complications). Some in-
formation is lost in the translation to protein sequences. On the other hand, an
obvious limitation to use of the original DNA sequences is that the assumption
of equal rates of change for all sites is violated due to the degeneracy of the ge-
netic code; a greater proportion of synonymous changes allows third positions to
evolve at a much more rapid rate than first and second positions. This problem is
easily corrected by allowing relative rates to be specified on a site-specific basis
(see below). However, selection at the amino acid or codon level will cause the
assumption of independence among sites to be violated as well. Consequently,
maximum likelihood analyses of protein-coding DNA sequences probably should
be conducted at the protein level unless the sequences are not very divergent (see
Reeves, 1992, for a discussion of these and related issues). An alternative is to use
a model of codon evolution with 61 states (Muse and Gaut, 1994; Goldman and
Yang, 1994), retaining the full information content of the DNA sequences. Unfor-
tunately, codon-based models are still in their infancy and are much more com-
putationally intensive than 4-state (or even 20-state) models.

THE RELATIONSHIP BETWEEN SUBSTITUTION RATE AND TIME For all of these models,
the probability of a change from state i to state j depends on the interaction of
the duration of time f and the substitution rate f only through their product pt
(Felsenstein, 1981a). Thus, a branch could be “long” either because it represents
a long period of evolutionary time or because the rate of substitution has been
high. In general, it is impossible to tease these two components apart unless one
is willing to assume a perfect molecular clock. Consequently, the mean substitu-
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tion rate j is usually set to 1 and the relative rate
parameters 4, b, ..., f are scaled so that the average
rate of substitution at equilibrium is 1 (e.g., Z.
Yang, 1994a). The length of a branch then repre-
sents the expected number of substitutions per
site along that branch, with no implication as to
the actual amount of evolutionary time it repre-
sents.

These models allow the expected number of
substitutions to be different for each branch of
the tree. As noted above, one consequence of this
freedom is that the likelihood of a tree can be cal-
culated independently of the location of the root.
If one is willing to assume that the substitution
rate is approximately homogeneous across lin-
eages, then the likelihood can be estimated un-
der a molecular clock model by estimating
branching times rather than the lengths of each
branch (Bishop and Friday, 1985; Felsenstein,
1993). (Note that this model then requires evalu-
ation of rooted rather than unrooted trees.) Be-
cause the clock model requires estimation of only
about half as many parameters as the uncon-
strained model [(T - 1)/(2T - 3)], it will be more
efficient (in the sense of requiring less data to
achieve the same level of accuracy) if the clock
assumptions are valid. Felsenstein (1993) out-
lined a likelihood ratio test of the molecular
clock that compares the likelihoods of the more
constrained clock model to the unconstrained-
branch-length model.

CHOOSING AN APPROPRIATE MODEL In a phyloge-
netic analysis, model selection and evaluation
are interrelated. There are two main criteria for
evaluating a phylogenetic model: how well it fits
the data at hand, and how well it fits with other
reliable data (sometimes called congruence in the
case of comparing trees). In selecting a model
based on fit of data at hand, there are tradeoffs to
consider. We can always improve the apparent
fit of a model by adding additional parameters,
but estimating these additional parameters also
leads to higher sampling variances. Measures of
fit are useful in deciding whether it is worth
adding an extra parameter (see A.J. Miller, 1990).

The general approach is to choose an overall

goodness-of-fit statistic and then search for a
model that maximizes this statistic without adding
unnecessary parameters that do little more than ex-
plain random fluctuations in the data. If we can as-
sume that sites in the sequence evolve indepen-
dently, then the data represent a multinomial
sample, so goodness-of-fit statistics such as a x* or
the log likelihood ratio test (e.g., G of Sokal and
Rohlf, 1981) can be used to measure the fit of the
observed data to the predictions of the model (see
Navidi et al., 1991 for a general discussion, and Rit-
Jand and Clegg, 1987 for examples). In phylogenet-
ics it is more common to use the likelihood ratio
statistic, which (unlike the 2 statistic) does not re-
quire the expected probability of all distinct nu-
cleotide patterns to be calculated. As with a contin-
gency table analysis, we expect that with a large
amount of data, the G statistic will behave like a }*
distributed random variable, assuming the model
is correct. (Likelihood-ratio tests of model fit are
further described in the section on “Reliability of
Inferred Trees.”) A related measure, the Akaike in-
formation criterion (Akaike, 1974), can also be used
to choose the most appropriate model (e.g.,
Kishino and Hasegawa, 1990), although in practice
this measure is similar to a variety of other model
selection criteria (see A.J. Miller, 1990). It is also im-
portant to avoid overconfidence when one model
fits the data much better than another if the over-
all fit is not good, since both models could be quite
inadequate.

Calculating the Likelihood of a Tree

To calculate the likelihood of a full tree, it is nec-
essary to consider the likelihoods of the occur-
rence of each state at each node in the tree as a
function of the tree topology and branch lengths.
As with other methods that define the optimal
tree in terms of an optimality criterion (e.g., least-
squares and parsimony), we will assume that the
tree is given, and that the present task is to deter-
mine how good it is. The method for evaluating
the likelihood of a given tree proceeds from a hy-
pothetical root node at any convenient location in
the tree, and combines the likelihoods of each of
its daughter trees (i.e., descendant lineages). (For
time-reversible models, the choice of root location



will not change the likelihood of the tree.) If Ais
an ancestor that gave rise to sequences B and C,
then the conditional likelihood of state i at se-
quence position jinAis

Ly =1)= [; P08 L5 = k)]
< | B Aol )

(8)

where vy, is the length of the branch joining se-
quence x to sequence y. We say “conditional”
likelihood because this value actually represents
the likelihood of the subtree descending from
node A given that x4 =1i. In words, the condi-
tional likelihood that A has state i is the product
of the likelihoods that the could have given rise
to the outcomes in B and C. The first term on the
right-hand side is the probability of state i chang-
ing to state k in the interval vap, Pix(vap), times the
Jikelihood that sequence B has state k at the cor-
responding position, summed over all possible
values of k. If B is a known sequence, then the
likelihood that position j has state kis1if kis
equal to the observed state in the sequence, Or
zero otherwise. On the other hand, if B is an an-
cestor, then the likelihoods of it having state k are
derived recursively, by inserting another copy of
the right-hand side of (8) into the equation. The
second term in equation (8) is analogous to the
first, but refers to the lineage Jeading to C. Calcu-
lating the Jikelihood of the entire evolutionary
tree at sequence position j requires multiplying
the conditional likelihood of each possible state
at the root node, L(x; = 1), by its prior probabil-
ity, m;, and summing over all ancestral states i.
Usually the root node will be made coincident
with one of the other nodes in the tree, eliminat-
ing one branch and one summation, as shown in
Figure 10C. The product of the position—speciﬁc
likelihoods is the overall likelihood of the tree.
Again, this is usually expressed as a sum of the
log-likelihoods for each position.

Figure 12 illustrates a tree of five sequences.
The corresponding likelihood for a position j is:
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where A, B, C, D, and E are the original se-
quences; F, G, and H are the labels of the internal
nodes; and the hypothetical root has been placed
at node G. The overall likelihood would be the
product over positions. The four factors of the
outer summation are: (1) the prior probability of
a state with identity m; (2) the conditional likeli-
hood of state m at node G giving rise to state k at
node E and k giving rise to xs; at node A, and k
giving rise to x; at node B; (3) the conditional
likelihood of m giving rise to ] at node H, and [
giving rise to Xp; at node D, and | giving rise t0 Xg;
at node E; and (4) the conditional likelihood of m
giving rise to xc; at node C. This basic pattern can
be expanded to trees of any size.

In the above description, we implicitly as-
sumed that the branch lengths were known, but
of course these are in general unknown and must
be estimated as part of the process of computing a
Jikelihood. The methods for finding the branch
lengths that maximize the value of the likelihood
function are beyond the scope of this chapter, but

B E
Figure 12 An evolutionary tree of five sequences: The
known sequences are at the terminal nodes and are la-
beled A, B, C, D, and E. The nodes F, G, and H repre-
sent ancestral sequences. The likelihood of this tree for
a particular site is calculated using equation 9.



442  Chapter 11 [ Swofford, Olsen, Waddell & Hillis

typically involve an jterative approach in which
each branch is optimized separately by Newton’s
method (e.g., Kishino et al., 1990; G.J. Olsen et al.,
1992; Tillier, 1994; Lewis et al., 1996). This method
is guaranteed to find globally optimal branch
lengths for a given tree topology only if there is at
most one maximum on the likelihood surface. Al-
though Fukami and Tateno (1989) claimed to have
proved this to be the case, Steel (1994b) presented
a simple counterexample demonstrating that mul-
tiple optimality peaks could occur and found the
error in Fukami and Tateno’s proof. Steel’s exam-
ple was artificial, but preliminary results (J.S.
Rogers and D.L. Swofford, unpublished data) in-
dicate that the problem can occur with real data
sets as well. So far, local optima seem to occur
only on trees that provide extremely poor expla-
nations of the data (e.g., random trees).

It is important to emphasize that the method
for calculating likelihoods described in this sec-
tion does not require calculation of the probabili-
ties of each possible reconstruction of ancestral
states as was shown in the conceptual example of
Figure 10. The two methods are in fact equivalent,
but if we were indeed required to consider all
possible reconstructions, the problem would be-
come essentially intractable, as there are 472 pos-
sible reconstructions for DNA sequence data and
2072 possible reconstructions for protein sequence
data. For example, a data set of 20 taxa and DNA
sequences of length 2000 would require calcula-
tion of the probabilities of 1.4 X 10" reconstruc-
tions for a given topology and set of branch
lengths, and adjustment of even one branch
length would require recalculation of all of them.
It is extremely fortuitous that the probability sum-
mations can be rearranged into forms like equa-
tion (9) (corresponding to the “pruning” algo-
rithm of Felsenstein, 1981a).

Evaluation of the likelihood of a tree and
counting the number of changes of a tree under
the general parsimony criterion are similar in sev-
eral respects. The cost of a given change under
parsimony is analogous to the likelihood of the
given change from the substitution matrix, P(t). In
parsimony, the cost of placing a given state at an
internal node is the sum of the costs of deriving
both of the daughter trees from that state, whereas

the likelihood of an ancestral state is the product
of the likelihoods of the state giving rise to the
daughter trees. In parsimony, the total cost of the
tree is the sum of the costs at each position,
whereas the net log-likelihood of a tree is the sum
of the log-likelihoods of the evolution at each se-
quence position. Essential differences between the
general parsimony approach and the maximum
Jikelihood approach include: the cost of a change
in parsimony is not a function of branch length,
unlike maximum likelihood; and maximum par-
simony looks only at the single, lowest cost solu-
tion, whereas maximum likelihood looks at the
combined likelihood for all solutions (ancestral
states) consistent with the tree and branch lengths
(see the discussion of integrated likelihood in
Goldman, 1990). Felsenstein has used the rela-
tionship between likelihood and parsimony to
gain several insights into the parsimony criterion,
including the discovery of the potential for incon-
sistency due to unequal rates (Felsenstein, 1978a)
and the inference of a character-weighting ration-
ale (Felsenstein, 1981c).

Accommodating Rate Heterogeneity across Sites
The maximum likelihood models described above
all assume that every site evolves at the same rate.
Violation of this assumption can have devastating
consequences. For instance, Gaut and Lewis
(1995) showed that maximum likelihood inference
under the assumption of rate homogeneity can
become inconsistent when the true evolutionary
process exhibits site-to-site rate variation, even
when all other aspects of the process are modeled
perfectly. If there is strong variation in rates across
sites, sites that are resistant to change (e.g., due to
strong selective constraints) can hide the actual
amount of change that has occurred at more
rapidly evolving sites. This causes maximum like-
lihood to underestimate the number of multiple
changes; the longer the branch the greater the un-
derestimation. Thus, maximum likelihood can be-
come “positively misleading” (Felsenstein, 1978a)
for exactly the same reasons as parsimony (Figure
8): highly divergent sequences will appear to be
more closely related than they actually are (see
Lockhart et al., 1995a, for a probable example of
this problem with real data).



Rate heterogeneity can be incorporated into
Jikelihood analyses by including an additional rel-
ative rate component, 7, into the substitution
probability expressions. In the JC model, for ex-
ample, we let

FHE (=5

et (i # )

| s 02

If the relative rates r are scaled so that the mean
substitution rate remains 1, branch lengths will
still reflect the number of substitutions per site. In
the simplest case, we simply assign a rate 7; to
each site j. Typically, the basis for this assignment
would be some a priori classification of sites into
functional categories and assignment of relative
rates to the categories. Categorizations might be
first, second, and third positions of a protein—cod—
ing gene, or paired versus unpaired sites for a ri-
bosomal RNA gene. It is also possible to assign
sites to rate categories based on the observed pat-
tern of residue change. Van de Peer et al. (1993)
proposed a way to do this by observing the fre-
quency with which sequence pairs differ at each
site as a function of the distance between the se-
quence pair. G.J. Olsen has written a program
(DNArates; see Appendix) that performs a maxi-
mum likelihood estimate of the rate at each site
for a given phylogenetic tree.

Several stochastic models that explicitly in-
corporate site-to-site rate variation are available.
In these models, each site has a certain probabil-
ity of evolving at any rate contained in some
probability distribution, which may either be dis-
crete or continuous. For a discrete rate distribu-
tion, the full likelihood for a given site is obtained
by summing over rate categories the likelihoods
of the site given each rate, weighted by the proba-
bility that the site is drawn from each category
(Felsenstein, 1981a). Site likelihoods are calculated
analogously for a continuous rate distribution ex-
cept that the likelihoods must be integrated over
the entire distribution.

The simplest model based on a discrete distri-
bution is an invariable-sites model that assumes
some fraction of the sites is incapable of accepting
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substitutions (perhaps due to strong functional
constraint), but that the remaining sites all vary at
the same rate (Hasegawa et al., 1985b; Churchill
et al., 1992; Reeves, 1992; Sidow et al., 1992). In
this case, when r = 0, Py(t,r) =1 and Pi(t,r) =0 for
all i #j. The proportion of invariable sites must ei-
ther be estimated separately (see below) or treated
as a parameter that is optimized for each tree.
There is no reason in principle to restrict the rate
of one of the categories to 0 (no change), or to
limit the number of categories to 2, but estimation
of the proportion of sites within each category
and the relative rates among categories becomes
much more complicated otherwise.

The most commonly used continuous distrib-
ution for modeling rate heterogeneity is the
gamma (I') distribution (e.g., Z. Yang, 1993; Steel
etal, 1993c). The I distribution has two parame-
ters, a shape parameter zand a scale parameter f3.
By setting fto 1/, a distribution with a mean
rate of 1 is obtained, and a wide variety of rate
distributions can be obtained by varying o (Fig-
ure 13).

The shape parameter ¢is equal to the inverse
of the squared coefficient of variation of the sub-
stitution rate, so that as & increases, the distribu-
tion converges to an equal-rates model. Obtaining
likelihoods by integrating over the T distribution
(or any other continuous distribution) is usually
computationally intensive (Z. Yang, 1993; see the
section on Hadamard conjugation for a fast
method under some models). Z. Yang (1994b)
evaluated an alternative procedure in which the T’
distribution is divided into several rate categories
by finding boundaries in the distribution such
that each category has equal probability. The
mean (or median) of each category is then used to
represent all of the rates within that category. Z.
Yang (1994b) found that this “discrete gamma”
model can provide a good approximation with as
few as four rate categories. The advantage of us-
ing a discrete model is that it requires only a tiny
fraction of the computer time needed for the con-
tinuous I' model. The discrete I" distribution, like
the continuous case, only adds one extra parame-
ter to the model (the shape parameter), no mafter
how may rate categories are considered.

In some situations, mixtures of rate hetero-
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Figure 13 The gamma distribution for four different
values of the shape parameter (o). When « is small,
most of the sites evolve very slowly, but a few sites
have moderate-to-high rates. As o increases, the dis-

eneity models may be appropriate. For example,
Gu et al. (1995) and Waddell and Penny (1996a)
have proposed an winvariant + gamma” model, in
which some fraction of the sites, 8, are invariable,
with the remaining rates distributed according to
a T distribution with shape parameter o.

Estimating Model Parameters

The models described above contain a variety of
parameters that must be estimated from the data
or supplied on the basis of extrinsic evidence.
These parameters include: the tree topology; the
branch-length estimates (which are specific to
each topology); the relative rate parameters of the
substitution models (@, b, ..., f)in matrix (4) or re-
lated parameters such as K and K; the base-fre-
quency parameters (7w, e, Tar and mp), and the
parameters used in modeling rate heterogeneity
(gamma shape parameter, proportion of invari-
able sites, etc.). Ideally, we would search for glob-

Rate

tribution becomes more peaked and symmetrical
about a mean rate of 1.0. When o is infinity, all sites
have relative rate 1.0, so that an equal-rates model can
be obtained as a special case of the gamma model.

ally optimal values of these parameters in the 7-
dimensional parameter space. That is, we would
consider every possible tree and optimize
(jointly) all parameters of the model for each tree,
choosing the resulting tree(s) of highest likeli-
hood. For a given tree, one could perform a mul-
tidimensional optimization using Newton’s
method (e.g., AW.E Edwards, 1972). Unfortu-
nately, this approach is difficult to implement be-
cause it requires knowledge of the first and sec-
ond partial derivatives (and second cross-
derivatives) of the likelihood function with re-
spect to each of the parameters. Even when these
derivatives are available, their computation can
be quite slow.

In the section “Calculating the Likelihood of
a Tree,” we described a procedure that finds
branch lengths that are at Jeast locally optimal,
given the values of any other parameters in the
model. For any model more complex than the



JC /Poisson models, the values of additional para-
meters should be simultaneously optimized.
When the model contains only one additional pa-
rameter (e.g., Kin the KZP model or the shape pa-
rameter in the JC+T model), it is relatively easy to
plot the likelihood function evaluated at various
values of the parameter of interest and thereby
find a value that approximately maximizes the
Jikelihood (e.g., Felsenstein, 1993). Obviously, this
procedure can be quite tedious.

A method that has worked well for one of us
(DLS) is the use of derivative-free methods for
function minimization developed by Brent (1973)
for a single variable and M.].D. Powell (1964; as
modified by Brent, 1973) for two or more€ vari-
ables. The procedure implemented in PAUP*
(Swofford, 1996) is to use the Brent-Powell meth-
ods to find optimal values for all parameters other
than branch lengths. When these algorithms need
to evaluate the likelihood function, optimal
branch lengths (conditional on the current values
of the other parameters) are obtained using New-
ton’s method as described above. Thus, optimal
values of all parameters are obtained when the al-
gorithm converges. (As for all heuristic methods,
however, there is no guarantee that the resulting
solution is globally optimal.) For small data sets
(4-8 taxa), this strategy can be used for every tree
evaluated due to the small size of the trees and
the modest number of topologies tested. How-
ever, optimization of all model parameters on
every tree tested dramatically slows the search us-
ing larger data sets. Z. Yang and coworkers (Yang,
1994a,b,c; Yang et al., 1994) have suggested that
parameter estimates are fairly stable across tree
topologies as long as the trees are not “too wrong”
(Yang, 1995). Estimates of the shape parameter for
the I model of site-to-site rate variation appear to
be somewhat more sensitive to the tree topology
than substitution-rate parameters (Yang, 1995;
Sullivan et al., 1995b), although these conclusions
~ are largely based on comparison of trees that
probably fall into the “to0 wrong” category (e.g.,
random trees or star trees).

As long as parameter estimates are not
wildly unstable across tree topologies, a poten-
tially useful method would be to estimate the
model parameters on some reasonably good tree
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for the data (e.g., a parsimony tree, or a maxi-
mum likelihood tree inferred under the model of
Jukes and Cantor, 1969) and then “fix” the result-
ing estimates in a search for better trees under the
desired model. A successive approximations ap-
proach might work very well in this case. That is,
if a tree of higher likelihood is found, the para-
meters could be re-optimized on this new tree
and fixed for yet another search, alternating be-
tween estimation and tree-searching until the
same tree is found in successive iterations. Al-
though this strategy seems quite promising, its
offectiveness needs to be confirmed in empirical
studies. Note that one of the limitations ascribed
to the use of successive approximations in parsi-
mony character weighting is not relevant in this
case, because the likelihood function provides an
objective function that is comparable across para-
meter values and trees.

An alternative to the methods presented
above is to estimate the model parameters using
methods other than likelihood. For example, the
I shape parameter can be approximated by fitting
a negative binomial distribution to a frequency
distribution of the number of changes required at
each site under the parsimony criterion (e.g.,
Uzzell and Corbin, 1971; Kocher and Wilson,
1991; Wakeley, 1993; Sullivan et al., 1995a). A sim-
ilar approach can be used to estimate the propor-
tion of invariable sites using the Poisson distribu-
tion (Fitch and Markowitz, 1970; Markowitz,
1970). Sidow et al. (1992) described another inter-
esting method for estimating the proportion of in-
variable sites based on a mark-recapture model
(Seber, 1982). These estimates require different as-
sumptions than maximum likelihood tree models
and can be calculated quickly, so they may be use-
ful as a first approximation for selecting a model,
obtaining starting parameter values for maximum
likelihood estimation, or examining the effect of
tree topology on parameter estimates (e.g., Sulli-
van et al., 1995a).

Maximum Likelihood Methods for

Other Data Types

Maximum likelihood methods also can be applied
to other data types, such as gene frequencies
(Felsenstein, 1981b) or restriction sites (Felsen-
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stein, 1992b). The basic approach is the same as
that described above for sequence data: one for-
mulates a model of evolutionary change and cal-
culates the probability that the observed data (in
this case, restriction site presences /absences or ar-
rays of gene frequencies) would have been gener-
ated by a particular tree topology under the
model. The mechanics of estimating branch
lengths and other model parameters are essen-
tially equivalent; the differences lie in the form of
the models and how change probabilities are cal-
culated.

Pairwise Distance Methods

A critical point made in the comparison of parsi-
mony and likelihood methods above was that
parsimony methods seek solutions that minimize
the amount of evolutionary change required to
explain the data, whereas likelihood methods at-
tempt to estimate the actual amount of change ac-
cording to an evolutionary model. This distinction
is relevant because as mutations are fixed in the
genome, there is an ever-increasing chance of su-
perimposed changes occurring at a single se-
quence position: changes at a particular site along
a lineage of the phylogeny may mask earlier
changes at that site, and parallel or convergent
changes may occur at the same site in different
lineages. Thus, estimates of the amount of evolu-
tionary change implied by parsimony will be un-
derestimates of the true amount of change, unless
the actual rate of change is extremely small.

An alternative to the use of likelihood for
minimizing the impact of the underestimation
problem is the use of corrected distances that ac-
count for superimposed changes by estimating
the number of unseen events using the same sorts
of models employed in maximum likelihood
analysis. The corrected distances are then esti-
mates of the true evolutionary distance, which re-
flects the actual mean number of changes per site
that have occurred between a pair of sequences
since their divergence from a common ancestor.
Thus, following Cavalli-Sforza and Edwards
(1967), we view distance methods as less desirable
approximations to a full maximum likelihood ap-
proach. In recent simulation studies, maximum

likelihood methods have consistently outper-
formed distance methods in choosing the correct
tree (e.g., Kuhner and Felsenstein, 1994; Z. Yang,
1994c; Huelsenbeck, 1995a). Although some other
studies have reported better performance of some
distance methods (Saitou, 1988; Saitou and Iman-
ishi, 1989; Tateno et al., 1994), these results have
subsequently been shown to be based on inade-
quate computer programs and/or inappropriate
comparisons (Hasegawa et al., 1991; Z. Yang,
1994¢; Huelsenbeck, 1995b).

For some sources of data, including im-
munology and nucleic acid hybridization, thereis
no alternative to the use of distance methods. For
other types of data, including macromolecular se-
quence, restriction site, and allozyme data, dis-
tances can provide a way to take advantage of
models of evolutionary change when likelihood
methods are either unavailable or intractable. Un-
til recently, computers have been too slow and al-
gorithms too inefficient to exploit fully the advan-
tages of maximum likelihood techniques, and
distance methods played a more important role.
Even with the availability of faster maximum like-
lihood computer programs (see Appendix), dis-
tance methods remain useful, particularly for the
analysis of large data sets, where their increased
speed allows more thorough testing of alternative
tree topologies.

The negative side of reducing character data
to pairwise distances is that information is lost in
the transformation. For instance, Penny (1982) has
shown examples in which several different sets of
sequences yield the same distance matrix, but
given only the distances it is impossible to go
back to the original sequences. Although this loss
of information probably explains the better per-
formance of character-based maximum likelihood
inference, it clearly is not devastating. In fact,
many sequence data sets yield identical conclu-
sions with character-based and distance-based
analyses (e.g., G.J. Olsen, 1987). Another draw-
back to distance analysis is that it does not lend it-
self to the combination of different kinds of data
into the same analysis, as is possible for character-
based analyses (e.g., Miyamoto, 1985). Finally,
only through character-based analysis can & T€
searcher identify particularly informative charac-



ters (or regions) in order to limit subsequent stud-
ies to those characters that are most useful (e.g.,
the detection of so-called “signature” events;
Woese et al., 1980).

Additive Distances

If we could determine exactly the true evolution-
ary distance implied by a given amount of ob-
served sequence difference between each pair of
taxa under study, these distances would have the
very useful property of tree additivity (Figure 14):
the evolutionary distance between each pair of
taxa would be equal to the sum of the lengths of
each branch lying on the path between the mem-
bers of each pair. (The branch lengths also repre-
sent evolutionary distances between pairs of se-
quences, but at least one member of the pair is a
hypothetical ancestral taxon.) Additive distances
satisfy the four-point metric condition (Buneman,
1971): for any four taxa A,B,Cand D,

dyg+dcp <

max{dac +dgp dap +dac) (10)

where dj; is the distance between taxa i and j, and
“max” is the maximum value function. Conceptu-
ally, this simply means that of the three sums of
distances d;; + dy where i#zj#k#l one of these
must be as small or smaller than the other two,
and these other two must be equal. For example,
in Figure 14A:

dyg+dep =0tV + U+ Ts

dAC+dBD=(vl+vs+v4)+(vz+v3+05)=
v, + U, + Uy + U5+ 203

dAD+dBC=(v1+v3+'05)+(v2+93+v4)=
vl+v2+v4+1)5+2v3

Tree-additive distances can be fitted to an un-
rooted tree such that all pairwise distances are
equal to the sum of the lengths of the branches
along the path connecting the corresponding taxa
(Figure 14A). Unfortunately, due to the finite
amount of available data, stochastic (random) er-
rors will cause deviation of the estimated evolu-
tionary distances from perfect tree additivity even
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Additive properties:
dap=11+ 702
dAC: U+ U3+ Uy
dap=11+ U3+ Us
dpc =V + U3+ 7Ty
dgp =Up + U3+ Us
dcp=U4+Us

(B) A
U
v B
v
Vg
C
Additive properties:

dAB-_—'U]'i'Uz"F'Ug
dac=11 + U2+ 7y
dBC:'U3+T)4

Ultrametric properties:
U3= 04
U1 = Uy +U3=Up+ Ty

Figure 14 Additive and ultrametric trees. (A) An ad-
ditive tree relating four taxa: A, B, C, and D. It also lists
the relationships between the six taxon-to-taxon dis-
tances (d5p through dcp) and the five branch lengths
(v; through vs). Additive distances and trees do not
make any assumption about the rooting; hence the re-
lationships are displayed in an unrooted format. All
sets of pairwise distances that satisfy the four-point
condition (see text) can be represented as a unique ad-
ditive tree. (B) An ultrametric tree relating three taxa: A,
B, and C. In addition to having additive properties (all
taxon-to-taxon distances are the total of the branch
lengths joining them), every common ancestor is
equidistant from all its descendants. Thus, the most re-
cent common ancestor of Band Cisv3 from B and v4
from C, therefore v3 = v4. Likewise, the common an-
cestor of A and Bisv; from A and v, + v3 from B,
therefore v, =02 +0V3-
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when evolution proceeds exactly according to the
model used for distance correction. Many meth-
ods have been described that derive a tree and an
associated set of branch lengths that comes clos-
est (in some sense) to being additive for a matrix
of pairwise distances. These methods typically,
but not always, attempt to optimize an objective
function that quantifies the degree of “distortion”
between the path length and observed distances.
The original descriptions of these methods often
confound the choice of an optimality criterion
with the algorithms used to select an optimal tree,
but we will separate these two components, de-
ferring the latter to the “Searching for Optimal
Trees” section.

Additive-Tree Methods

A complete record of all genetic events would
constitute a set of perfectly additive distances. We
will treat the experimentally derived distances,
which estimate the (unknown) number of genetic
events that have actually occurred from the num-
ber of differences actually observed between each
pair of taxa, as approximations of this ideal. To
emphasize the uncertainty in the values, we will
call them distance estimates. We can now address
the problem of choosing a tree from the following
conceptual perspective: We have uncertain data
that we want to fit to a particular mathematical
model (an additive tree) and find the optimal
value for the adjustable parameters (the branch-
ing pattern and the branch lengths).

FITCH-MARGOLIASH AND RELATED METHODS
Several methods depend on a definition of the
disagreement between a tree and the data based
on the following family of objective functions:

T-1 T
E=Y, > wyld;-p;l° @

i=1 j=i+1

where E defines the error of fitting the distance es-
timates to the tree, T is the number of taxa, w;; is
the weight applied to the separation of taxa i and
j, dj; is the pairwise distance estimate, pj; is the
length of path connecting 7 and j in the given tree,

the vertical bars represent the absolute value, and
a =1 or 2. A value of @ and a weighting scheme
must be chosen.

Setting o to 2 represents a weighted least-
squares criterion; the weighted squared devia-
tion of the path-length distances from the dis-
tance estimates will be minimized. If @ =1, then
the weighted absolute differences will be mini-
mized. If the errors in the distance estimates are
distributed uniformly across the data, then the
least-squares criterion is preferred. If some esti-
mates are apt to be particularly bad, there are
two considerations. First, if the identities of the
least certain estimates are known, this knowl-
edge can be accommodated in the least-squares
method by assigning particularly low weights to
these uncertain values. If, however, it is not
known a priori which estimates are apt to be er-
roneous, then using the minimum absolute de-
viations will reduce the overall perturbation
caused by spurious data values. This last condi-
tion might pertain to direct experimental deter-
minations of the distance data, a situation in
which unrecognized experimental artifacts
could substantially flaw some values.

The four most commonly used weighting
schemes are:

w;; =1 (12a)
w; =1/d; (12b)
wy; =1/d; (12¢)
w; =1/ 0% (12d)

where O’,% is the expected variance of measure-
ments of d;;. The first three equations amount to
implicit assumptions about the uncertainty of the
measurements: equation (12a) (Cavalli-Sforza and
Edwards, 1967) assumes that all distance esti-
mates are subject to the same magnitude of error;
equation (12¢) (Fitch and Margoliash, 1967) as-
sumes that the estimates are uncertain by the
same percentage; and equation (12b) could be



viewed as a compromise that assumes the uncer-
tainties are proportional to the square roots of the
values (Felsenstein, 1993). Note that missing data
can correctly be handled by setting the corre-
sponding weight to zero; that is, if d,-]- is unknown,
setting w;; = 0 will cause this observation to be ig-
nored (although most currently available software
does not allow specification of individual pair-
wise weights).

If there is a rational method for estimating @ 7,
then use of equation (12d) is preferable. Theoreti-
cal variance formulas are available for most of
the model-based distances described below (al-
though space limitations preclude their inclusion
here, they are available in the original refer-
ences). These theoretical variances can be used
for DNA and protein sequence data, restriction
site data, and gene frequency data. An important
property of these formulas is that they explicitly
state the dependence of uncertainty on the
amount of data; e.g., for sequence-based dis-
tances, the variance is inversely proportional to
the sequence length-N. A problem, however, is
that if two sequences are identical, the estimated
uncertainty will be zero, which causes equation
(12d) to be undefined and would be a question-
able conclusion in any case. A practical treatment
is to assume that the minimum measurable dis-
similarity is one-half of a substitution, yielding
(approximately) 1/ (ZNZ), as a minimum value to
be imposed on the estimated variance.

For other kinds of data, including indirect
methods such as DNA hybridization or immuno-
logical distances, random errors can be estimated
by comparing replicate experiments Or using reci-
procal comparisons (where appropriate; see
Chapter 6). These concepts are discussed in the
corresponding experimental chapters.

For an unrooted tree of T taxa, there are 2T — 3
independent branches that define the p;; values,
and there are T(T — 1)/2 distinct pairwise dis-
tances. To represent mathematically the relation-
ships between the branch lengths, vy, and the path
lengths between pairs of taxa, we need an appro-
priate representation of the tree topology. Let A be
a matrix of T(T — 1)/2 rows and 2T - 3 columns
such that the element Agy is equal to 1 if the
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branch k is part of the path connecting taxon ito
taxon j, otherwise A 15 equal to 0. With this de-
finition it follows that

2T-3

Pi = ZA(ij)kUk
k=1

Thus, a system of equations such as that of Figure
14A can be represented in matrix notation as

11000,01 Pap
10110} " |Pac
1010 1|7 [Pap
v Psc
01101v5 Poo
00011 Pen
A v= Pp

If the distances were additive, then p; = dj; for all
(i, j) pairs, and we could solve (13) directly. In
general, however, due to the imperfect additivity
of the distances, we must use (13) to eliminate pjj
from (11) and seek a solution to the vy’s that mini-
mizes E. This minimization can be accomplished
using special-purpose linear or quadratic pro-
gramming algorithms (e.g., Barrodale and
Roberts, 1973), by iterative successive refinement
techniques (“alternating least-squares;” Felsen-
stein, 1993), or—when a =2 and w; = 1—by using
ordinary linear algebra (e.g., Cavalli-Sforza and
Edwards, 1967; Kidd and Sgaramella—Zonta, 1971;
G.J. Olsen, 1988) using the equation:

% = (ATA)_I(ATd) (14)

For weighted least-squares criteria like that of
Fitch and Margoliash (1967), the linear algebraic
solution is

_— (ATWA)'I(ATWd) (15)
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where Wisa T(T - 1)/2x T(T - 1)/2 matrix with
diagonal elements equal to the weights associated
with each pairwise comparison and all off-diago-
nal elements equal to 0.

The methods in the previous paragraph fit the
data to a specific tree topology, and thus assume
that an appropriate search strategy will be used to
find the best topology. In an alternative approach
described by De Soete (1983a,b), the values of pj
are initially set to the observed distances (d;), and
then they are gradually adjusted by an optimiza-
tion regimen that keeps them at a local minimum
of equation (11), while improving their fit to in-
equality (10) for all sets of four taxa. At the end of
the process, all sets of p;; satisfy inequality (10)—
so they will perfectly fit some additive tree—and
they are at a minimum of equation (11).

A problem that sometimes arises with the
above methods is that full minimization of equa-
tion (11) requires that some of the v; be negative.
A negative branch length does not correspond to
any meaningful biological process and should
probably be avoided (e.g., Kidd and Sgaramella-
Zonta, 1971). Allowing branches to have negative
values when E is evaluated is probably inappro-

priate because some highly suboptimal trees can
use negative values to produce a low apparent er-
ror. Several methods for dealing with negative
branch lengths have been proposed. Some au-
thors (e.g., Cavalli-Sforza and Edwards, 1967;
Kidd and Sgaramella-Zonta, 1971) have favored
outright rejection of any tree that requires a nega-
tive optimal value for any branch. This extreme
approach runs the risk of rejecting the correct tree
in certain realistic situations. An alternative strat-
egy (Felsenstein, 1993) is to constrain the opti-
mization process so that the negative branch
lengths are disallowed; a solution that optimizes
E under the constraint that all branch lengths be
non-negative is obtained. If (14) or (15) is used to
determine least-squares branch lengths, the only
alternative is simply to set any negative branch
lengths to zero and then calculate E without read-
justing the other branches. This method gives ex-
act values of E for trees that have no negative
branch lengths and overestimates the value of E
otherwise. The amount of overestimation is small
as long as there are no large negative branch
lengths.

Table 1 summarizes the results of a least-

Table 1

Optimal 55 rRNA tree by weighted least-squares criterion

Sequence Estimated Expected Distance Expected Error
pair’ distance” distance® difference’ uncertainty” contribution
Bsu-Bst 0.1717 0.1655 0.0062 0.0522 0.00133
Bsu-Lvi 0.2147 0.2269 -0.0122 0.0600 0.00415
Bsu-Amo 0.3091 0.2895 0.0196 0.0758 0.00667
Bsu-Mlu 0.2326 02414 -0.0088 0.0630 0.00194
Bst-Lvi 0.2991 0.2958 0.0033 0.0743 0.00020
Bst-Amo 0.3399 0.3584 -0.0185 0.0809 0.00521
Bst-Mlu 0.2058 0.2058 0.0000 0.0584 0.00000
Lvi-Amo 0.2795 0.2795 0.0000 0.0708 0.00000
Lvi-Mlu 0.3943 0.3716 0.0227 0.0902 0.00633
Amo-Mlu 0.4289 0.4343 -0.0054 0.0906 0.00031

Data from G.J. Olsen, 1988. The corresponding tree is illustrated in Figure 15A.

« Abbreviations are as in Figure 15.

» Distance estimate from sequence comparisons, using equations (4) and (5), with b =3/4.
« Sum of appropriate branch lengths along the path joining the taxa in the inferred tree.

4 Difference of the two previous columns.
« Square root of the variance estimate from equation (16).

fThe individual terms of the summation in equation 14, with ¢=2and wj; = 0',-}-'2.



squares calculation for a tree of five rRNA se-
quences. The table presents the pairwise distance
estimates with their expected uncertainties, the
corresponding path lengths through the inferred
tree, and the error contributed by each distance to
the overall value of E. As expected for a least-
squares methodology, the paths through the best
fitting tree will sometimes exceed the correspond-
ing distance estimates (e.g., Bsu to Lvi) and some-
times they will be shorter (e.g., Bsu to Bst). It
might be noticed that two distances are fitted ex-
actly. Tree branch lengths assigned by most meth-
ods will exactly reproduce the distances between
sister taxa in a tree (as long as negative numbers
are not involved). The inferred tree is shown in
Figure 15A.

The least-squares and minimum-absolute-de-
viation approaches implicitly assume that each
pairwise distance measurement is independent.
Because of the common evolutionary history of
the molecules in question, this assumption is not
generally true. The primary consequence of vio-
lating this assumption is purely statistical; trees
will be less well resolved than they would be if
the samples were in fact independent. However,
a second consequence is that any systematic er-
rors in the distance estimates can also be multiply
sampled, and thus the pairwise methods are po-
tentially more sensitive fo undercompensation for
homoplasy in the data (see the section on “Sys-
tematic Error” later in this chapter). Felsenstein
(1986, 1988a) discussed methods for dealing with
interdependencies in pairwise distance data. In
practice, none of these methods are used regularly
because of their computational complexity and
other limitations. Note that neither parsimony nor
maximum likelihood suffers from this difficulty.

THE MINIMUM EVOLUTION METHOD Kidd and
Sgaramella-Zonta (1971) suggested using the
unweighted least-squares criterion (equation 11,
with w;; =1 and a = 2; Cavalli-Sforza and
Edwards, 1967) to fit the branch lengths, but a
different criterion to evaluate and compare trees:

2T-3
1Slength= ¥ [oi (16)
k=1
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Figure 15 Comparison of 55 rRNA phylogenies in-
ferred by different pairwise distance methods (data
from Olsen, 1988). (A) Trees obtained using neighbor
joining and weighted least-squares. The upper branch
lengths (expected substitutions per sequence position)
are from the neighbor-joining analysis in Figure 30, and
the parenthetical values are from the weighted least-
squares analysis in Table 1. Although the tree is un-
rooted, the M. luteus sequence is considered the out-
group. (B) Tree obtained by cluster analysis (UPGMA)
from the analysis in Figure 29. It can be seen that the
neighbor-joining and least-squares procedures pro-
duced very similar trees, but the cluster analysis tree is
very different. Two of the sequences, those of L. viri-
descens and A. modicum, are very much more diverged
than are the others, an effect to which cluster analysis
is particularly sensitive. Abbreviations used to identify
the taxa: Bsu, Bacillus subtilis, Bst, Bacillus stearother-
mophilus; Lvi, Lactobacillus viridescens; Amo, Achole-
plasma modicum; and Mlu, Micrococcus Tuteus.

That is, the optimality criterion is simply the sum
of the absolute values of the branch lengths that
minimize the sum of squared deviations between
observed (estimated) and path-length distances.
Subsequent simulations indicated that the LS
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length criterion consistently outperformed least-
squares criteria based on (11) (Kidd and Cavalli-
Sforza, 1971). Apparently unaware of this work,
Rzhetsky and Nei (1992a) described a method
based on essentially the same criterion, calling it
the minimum evolution method:

S= > 7 a7

The only difference between the two methods is
that Rzhetsky and Nei drop the absolute values in
equation (16), which has the seemingly undesir-
able property of allowing negative branch lengths
to improve the apparent goodness-of-fit of the
tree. In practice, however, the two methods are lit-
tle different, because the branch lengths are usu-
ally non-negative (or very close to zero if nega-
tive) (Swofford, unpublished observations) on
trees scoring well according to equation (16). The
choice of the name “minimum evolution” is un-
fortunate, as the same name had been used earlier
for a quite different method (Cavalli-Sforza and
Edwards, 1967; Thompson, 1973). Because the ear-
lier method was never widely used and the
Rzhetsky-Nei method is becoming very popular,
it seems best to refer to the methods defined by
equations (16) and (17) as the minimum evolution
(ME) method.

Rzhetsky and Nei (1992b) have provided a
theoretical argument for the superiority of the ME
method over the Fitch-Margoliash (FM) and re-
lated methods due to a bias in the latter methods
when the variance of the estimated distances is
high (e.g., due to large differences between short
sequences). Although their computer simulations
appeared to reinforce this conclusion, the actual
reason for the better performance of ME is un-
clear, as the bias quickly becomes inconsequential
as sequence length increases. It seems more plau-
sible that the enhanced ME performance is due to
a reduced impact of negative branch lengths in
the ME method. Kidd et al. (1974) reported that if
trees containing negative branch lengths are auto-
matically rejected, the ME and FM methods give
essentially identical results. Felsenstein and Kuh-
ner’s (1994) simulations also demonstrated a

striking improvement in the performance of the
FM method when branch lengths were con-
strained to be non-negative; in their study the per-
formance of the FM method slightly surpassed an
approximate method closely related to ME (the
neighbor-joining method; see below), but only if
negative branch lengths were disallowed.

Ultrametric Distances
Ultrametric distances are more constrained than
tree-additive distances. Mathematically, ultramet-
ric distances are defined by satisfaction of the
three-point condition, which requires that for any
three taxa A, B, and C,

d u < max(dyp, dpc) (18)

This inequality simply states that two of the three
pairwise distances between three taxa are equal
and at least as large as the third. Phylogenetically,
ultrametric distances will precisely fit a tree so
that the distance between any two taxa is equal to
the sum of the branches joining them, and the tree
can be rooted so that all of the taxa are equidistant
from the root (Figure 14B). The first half of this de-
scription defines an additive tree (and implies
that ultrametric distances are additive). The sec-
ond half of the description corresponds to the
concept of a molecular clock that runs at the same
rate in all lineages at any given moment. Two po-
tential surprises may emerge, however. First, even
with ultrametric data, there is no guarantee that
the amount of divergence is linear in time. In par-
ticular, superimposed sequence changes, which
decrease the observed molecular divergence, do
not destroy the ultrametric property. Second, ob-
taining ultrametric data is extremely unlikely;
even if the underlying substitution rate is per-
fectly constant, any finite sample will yield statis-
tical fluctuations in the measured divergences.
Consequently, even a universal substitution rate
would not give ultrametric data without an infi-
nitely large sample. The closest experimental ap-
proximations of infinite samples are genome hy-
bridization measurements (Chapter 6), although
measurement errors limit the effective amount of
data (Felsenstein, 1987).

I data are nearly ultrametric by equation (18),



which is rarely the case, methods that assume a
molecular clock can be more efficient (require less
data to achieve the same probability of inferring
the correct tree). Felsenstein’s (1993) KITSCH pro-
gram uses the same criterion as equation (11)
(with o = 2), but constrains the lengths of the
branches so that the total length from the root of
the tree to each terminal taxon is the same. Cluster
analysis methods (described below) are also ap-
propriate under the assumption of a molecular
clock, and are very fast. Colless (1970) provided a
precise definition of how much deviation from ul-
trametricity can be tolerated without causing the
estimation of the tree to become inconsistent.
However, there is little practical reason to use
cluster analysis because related methods such as
neighbor joining are applicable to more general
additive distances, require very little additional
computation, and are often more efficient in sim-
alation studies under a molecular clock model
(Sourdis and Krimbas, 1987; Charleston, 1994) un-
less rates of substitution are high.

Distance Transformations for Sequence Data

MEASUREMENT OF SEQUENCE DISSIMILARITY By
far the most common method of summarizing
the relationship between two sequences is by
their fractional (or percentage) similarity or dis-
similarity. In its simplest form, the sequence dis-
similarity is equal to the number of aligned
sequence positions containing non-identical
residues (bases or amino acids) divided by the
number of sequence positions compared (in
mathematics this distance is called the Hamming
distance). However, we must explicitly address
several subtleties and potential ambiguities:
alternatives to limiting the comparison to identi-
cal residues; terminal length variation of mole-
cules; alignment gaps; and treatment of ambigui-
ties. The following sections assume that the
sequence alignment has already been defined
(see “Sequence Data” in the section “Types of
Data” above, and Chapter 9).

It is frequently of interest to define the simi-
larity of two molecules in terms of a more relaxed
criterion than the fraction of identical residues,
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thereby changing our definition of sequence dis-
similarity to the number of aligned sequence posi-
tions containing “non-synonymous” residues di-
vided by the number of sequence positions
compared. For example, “conservative substitu-
tions” are commonly ignored when comparing
proteins by pooling the amino acids into six
groups: acidic (D, E), aromatic (F, W, Y), basic (H,
K, R), cysteine, non-polar (A, G, L L, I, V), and po-
lar (M, N, Q, S, T). Residues within each group are
considered synonymous; residues in different
groups are considered non-synonymous.

As discussed above, if the evolution of a gene
includes insertions and /or deletions, then gaps
must be inserted to adjust for the internal length
changes when aligning the contemporary se-
quences. Although the character state “gap” is
sometimes treated as a fifth base or twenty-first
amino acid, the processes responsible for base
substitution and for insertion and deletion are
evolutionarily and mechanistically distinct. Be-
cause a proper treatment is not obvious, sequence
positions with gaps are usually omitted from
analyses in one of two ways (e.g., Kumar et al.,
1993; Swofford, 1996). The first (pairwise deletion)
omits sites in which one or both sequences have a
gap for each affected comparison. This option is
appropriate when gaps are short and distributed
approximately at random (Kumar et al., 1993). A
second treatment (complete deletion) deletes a
site from all pairwise comparisons if any of the se-
quences in the data set have a gap at that site. Al-
though the complete deletion method discards
more information, it may be more appropriate
when some regions of a sequence (e.g., more
rapidly changing regions) are more prone to in-
sertion/deletion events than others, in which case
pairwise deletion could introduce a bias. Align-
ment gaps are usually positioned to maximize the
alignment of identical residues in sequences.
Thus, additional insertion/deletion events could
systematically raise the apparent similarity. Once
again we emphasize that regions of the sequence
alignment that contain substantial numbers of
alignment gaps should be omitted from the analy-
sis; positional homology is too uncertain for reli-
able estimates to be made from these regions.
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Terminal length variation refers to the observation that corresponding mole-
cules from different species (and even within an individual organism) can start
and end at different distances from homologous features within the molecules.
In addition to insertions and deletions, other genetic and physiological factors
(e.g., substitution mutations or alteration of a processing enzyme) could be re-
sponsible for these variations. Because of the diversity of mechanisms, omitting
the corresponding alignment columns, as in the second treatment above, seems

most appropriate.

ACCOUNTING FOR SUPERIMPOSED gvENTS The raw dissimilarity (or simnilarity) is
an appropriate value for summarizing the relationship between sequences.
However, it is an inescapable fact that as genes accumulate mutations, there is
an ever increasing likelihood that some of the changes will be at the same
sequence location. Because pairwise comparisons of sequences are based entire-
ly on the identity or non-identity of residues at corresponding sequence posi-
tions, the first substitution at a site will convert identical residues to non-identi-
cal residues. Subsequent changes at the same sequence position cannot further
decrease the similarity, but they can raise the similarity by converting the com-
pared residues to similar identities (parallelism or reversion). The net effect of
this superimposition of substitutions is that dissimilarity does not increase uni-
formly with the number of events; instead, it increases rapidly at first and more
slowly thereafter. Thus, correction of the distance to account for the unobserved
substitutions is necessary for the distances to conform to an additive-tree
model, unless all sequences are extremely similar. We show some of the more
common distance corrections below, but see Kumar et al. (1993) and Swofford
(1996) for more complete compilations.

A general framework for describing distance measures under a variety of
models uses a divergence matrix F,y to represent the relative frequencies of each
nucleotide (or amino acid) pair in a given pairwise comparison of two sequences

Xand Y, eg:

nyp /N Mac/N nyc/N mnar/N
o Hexd N fce/ N neg/ N ner/ N
¥ | nga/ N nee/N nec!/ N ner/ N s

nea/N me/N /N /N

where 1;; is the number of times sequence X has state i aligned next to state j in se-
quence Y, and N = Zn;;. Let us represent this matrix as

- om0

b ¢
F 2
j k
n o

= o~ T o

m

A frequently overlooked issue in pairwise sequence comparison is the treat-
ment of ambiguities G.e., nucleotide bases or amino acid residues of uncertain
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identity) in the sequences being compared. For example, counting a purine (R)
as synonymous with A and G and non-synonymous with C and T will tend to
overestimate the similarity between the affected sequence comparisons. One
approach (Swofford, 1996) is to distribute differences between sites with ambi-
guities based on the frequencies of differences at unambiguous sites. For in-
stance, suppose that a site has an A in sequence X and an R in sequence Y. If for
this comparison there are 450 sites that have an A in both sequences, and 50

sites that have an A In one sequence and a G in the other, then the site would

contribute 450/500 = 0.9 to the value of (Fy)aa. and 0.1 to (Fy)ac- Maximum
likelihood distances (see below) can deal with the ambiguities directly (e.g.,
Felsenstein, 1993) by considering the likelihood of each possible resolution of
the ambiguity.

The uncorrected distance, often referred to as the dissimilarity (D) or p-dis-
tance (e.g., Kumar et al,, 1993), is simply the total number of differences divided
by the total number of available sites:

d —b+ct+d+e+g+h+itjrleminto

p-distance : —1-@+f+k+D)

A pairwise distance estimate is essentially the branch length in an optimal phy-
logenetic tree of two taxa. Thus, most of what was said about models for maxi-
mum likelihood tree inference (above) also applies here.

The corrected distance for the Jukes—Cantor model, which assumes equal
rates of substitution between all pairs of bases, is calculated as

D=1-(a+f+k+p)

JC: 3. (. 4
dxy =—Z]I1( —'gD)

(20)

Note that the maximum expected dissimilarity is 0.75; if D equals or exceeds this
value, the distance becomes undefined because the argument of the logarithm be-
comes negative. A distance for the model of Felsenstein (1981 a), which relaxes the
assumption of equal base frequencies, is given by

F81: dy,=—-Bln(1-D/B) 1)

where D is the same as for JC above and B=1- {ﬁi + L+ g+ ﬂ%) (Tajima and
Nei, 1982). The base frequencies can either be estimated for each pair of sequences
compared or for the full set of sequences; we favor the latter due to lower sam-
pling variance.

Comparison of equations (20) and (21) reveals that (21) can be used to calcu-
Jate a distance for the JC model if we set B =3/4.In fact, (21) is a very general for-
mula that can also be used for calculating distances from protein sequences. A dis-
tance for the Poisson model is obtained if we set B =19/20, and a distance for the
Proportional (unequal amino acid frequency) model is obtained by setting

455
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where the 7/s now represent the frequencies of
each amino acid, and D represents the proportion
of amino acid differences between the two se-
quences.

The distance for Kimura’s (1980) two-para-
meter model is calculated from the proportions of
transition-type differences (P) and transversion-

type differences -

P=c+h+i+n
K2P: Q=b+d+e+g+j+l+m+o

oy :%ln(i?élffg)*%h‘(iflf@)

Note that the proportion of transitions and trans-
versions is estimated separately for each pair of
taxa, in spite of the fact that different pairs of taxa
share common lineages on the tree. For many
models more complex (and general) than the K2r
model, no simple distance formula exists (e.g., Z.
Yang, 1994a; Zharkikh, 1994). For example, the
HKY model (the unequal base-frequency general-
ization of the K2P model) does not have a simple
distance formula (see Z. Yang, 1994a for an expla-
nation). However, the closely related F84 model
does have a simple distance formula (Tateno et al.,
1994):

F84: d.=-24 ln(l—P Lé:ﬂ%

Ty 2A°  2AC
Z(A—B—C)ln( —%)

where @y = ic + Top, g = T + 7, A = memy/ oy +
ATt/ g, B = Mo + RATG, and C = ng@y, and P
and Q are as defined for the K2P model. The most
general model for which a simple distance for-
mula exists (Z. Yang, 1994a) is that of Tamura and
Nei (1993) (not shown), which generalizes the
HKY model to allow different rates for transitions
between purines versus those between pyrim-
idines.

Lanave et al. (1984) and Rodriguez et al.
(1990) have formulated a distance for the most

general time-reversible model (GTR). [Although
the algorithms described in these two papers are
quite different, the methods are actually equiva-
lent (Lewis and Swofford, unpublished; see Swof-
ford, 1996).] The Rodriguez et al. version of this
distance is

GIR: d,= —trace[l'[ m(n*lny)]

where T is a diagonal matrix of the average base
frequencies in sequences X and Y. (Interpretation
of this formula requires some familiarity with ma-
trix algebra. Note in particular that evaluating the
log of a matrix requires, amMong other things, de-
termination of its eigenvalues and eigenvectors.)
Lewis and Swofford (unpub]jshed; see Swofford,
1996) have developed an extension of the Lanave
et al—Rodriguez et al. method that allows estima-
tion of distances under any special case of the GTR
family of models. When simple formulas such as
the ones shown above exist, the Lewis—Swofford
method gives identical results, but it allows calcu-
lation of distances for many models for which dis-
tances were unavailable previously.

ESTIMATING TRANSITION AND TRANSVERSION SUB-
STITUTIONS SEPARATELY If transversions occur
much less frequently than transitions and the
amount of divergence is high, transition differ-
ences are likely to approach or reach saturation.
When this happens, transitions will contribute lit-
tle phylogenetic information and will cause infla-
tion of the variance of the evolutionary distance
estimates. In such situations, it may be preferable
to estimate the phylogeny using transversion
data alone, minimizing the impact of the noisy
transitions (Goldstein and Pollock, 1994). All of
the distance formulas described above can be
modified to estimate the number of transitions
and transversions per site separately (see Kumar
et al., 1993, and Swofford, 1996, for compilations
of these methods). Alternatively, one could
recode the nucleotide states into R (A or G) and b i
(C or T) and apply a two-state distance correction
(analogously to the transversion parsimony
method). Alternative distances have been pro-
posed for the K2P model that make separate esti-



mates of the number of transition versus trans-
version substitutions and use a weighted combi-
nation of these as the estimate of the evolutionary
distance (Schéniger and von Haeseler, 1993;
Goldstein and Pollock, 1994; Tajima and
Takezaki, 1994). These methods appear to be
much more reliable for tree inference than the
usual K2P distance (Pollock and Goldstein, 1994).

PROTEIN-CODING DNA SEQUENCES In principle,
knowledge of the gene sequence should be more
informative than the corresponding protein
sequence. In practice, at least two factors call this
assertion into question. First, silent substitutions
in protein-coding genes are much more frequent
than replacement substitutions; thus the third
codon positions tend to become randomized
quickly and convey very little information about
distant phylogenetic relationships. Second, the
base composition of the third codon position
appears to vary systematically between some
species, thereby indicating that it can be subject
to at least a moderately strong selective force
that is different in different lineages. The pres-
ence of directional selection can lead to profound
sequence convergences and consequent errors in
inferred relationships. With these considerations
in mind, three relatively simple strategies can be
used to analyze protein-coding sequences, and a
host of moderately to extremely complex alterna-
tives exists.

The simplest method of calculating distances
between sequences for protein-coding genes is to
apply the distance formulas above directly to the
gene sequence without special treatment. This
method is reasonable, or even preferred, when the
total amount of divergence is very small, in which
case the resulting trees are based primarily on
silent substitutions in the genes. The main draw-
back is that a systematic undercorrection for su-
perimposed substitutions will result, since the as-
sumption that all positions are equally subject to
change will clearly be violated. If the amount of
sequence divergence is truly small, then superim-
posed changes will be rare and the undercorrec-
tion will be negligible.

The second approach is to restrict the analy-
sis to the first two nucleotides of each codon. This
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strategy is appropriate when a substantial se-
quence divergence is apparent. The rationale is
that the third codon position will be largely ran-
domized and hence phylogenetically uninforma-
tive. This approach, by definition, also circum-
vents the problem of the third codon position
changing more rapidly than the first two and re-
duces the degree of violation of the assumption
that all sites are changing at the same rate.

The third basic method is to infer the protein
sequence from the gene sequence and perform the
phylogenetic analysis at the protein level. This ap-
proach has two merits: (1) the protein is the most
biologically relevant aspect of the gene (taken as
a whole); and (2) the sequence can be compared
with homologous molecules that were sequenced
at the protein level, for which nucleotide se-
quences are therefore unknown. In addition to the
distances for the Poisson and Proportional mod-
els described above, PHYLIP (Felsenstein, 1993)
provides a distance under the Dayhoff model.

The more complex methods involve estimat-
ing the numbers of synonymous (silent) and non-
synonymous (replacement) substitutions sepa-
rately. When the maximum divergence between
taxa is low, distances based on synonymous
changes may reduce the effect of among-site rate
variation, as synonymous substitutions are largely
neutral (Kumar et al., 1993). For more distantly re-
Jated taxa, restriction to non-synonymous changes
tends to minimize the impact of noise contributed
by a large number of silent changes. Many meth-
ods have been proposed for estimating synony-
mous versus non-synonymous substitutions (W.-
H. Li et al., 1985b; Nei and Gojobori, 1986; W.-H.
Li, 1993b; and references cited therein). These
methods differ in the details of how they deal
with multiple substitution pathways when two
codons are more than one substitution apart and
how they account for different levels of degener-
acy (e.g., a site in a sequence is twofold degener-
ate if one of the three possible changes is synony-
mous and fourfold degenerate if all possible
changes at the site are synonymous).

MAXIMUM LIKELIHOOD DISTANCES The most
straightforward (and computationally intensive)
method for estimating evolutionary distances is
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to apply maximum Jikelihood according to the
models described under “Models of Sequence
Evolution.” As noted above, the #tree” in this
case is a single branch, and we estimate the
branch length (expected number of substitutions
per site) that maximizes the probability of one
sequence evolving from the other. (Because of the
time-reversibility of the models, it makes no dif-
ference which sequence is considered ancestral.)
Felsenstein’s (1993) DNADIST program obtains
maximum likelihood estimates of distance under
the JC, K2P (with or without a gamma-correction
for among-site rate variation), and F84 models,
but the same approach easily could be adapted to
accommodate other models. Many (but not all) of
the distance formulas presented above are maxi-
mum likelihood estimators (e.g, see Zharkikh,
1994). However, direct use of maximum likeli-
hood to calculate the distance has a number of
advantages. Most importantly, it allows model
parameters, such as the transition:transversion
ratio, to be maintained at a consistent value
across all pairwise comparisons (e.g., although
the standard K2P distance formula is a maximum
likelihood estimate when estimating the transi-
tion:transversion ratio independently for every
pair, the distance must be numerically evaluated
using maximum likelihood in order to use a fixed
ratio as a means of reducing sampling variance).
Maximum likelihood estimation also provides a
very clean way of handling missing or ambigu-
ous data, as the probability of observing each of
the bases allowed by the ambiguity can be explic-
itly evaluated.

Although maintenance of substitution-model
parameters at a consistent value is an advantage
of maximun likelihood distances, it adds the bur-
den of specifying their values. One possible way
of estimating these parameters is to perform phy-
logenetic analyses using a range of parameter val-
ues, then choose the parameter settings that max-
imize the additivity of the distances on the best
tree(s) found (e.g., that minimize the value of Ein
equation 11). Alternatively, parameters may be es-
timated using maximum likelihood on a few “rea-
sonable” trees obtained using simpler distances.
If the parameter estimates are reasonably similar
across these trees, it is probably safe to use their
mean value (or the value from the tree that had

the highest Jikelihood) as the parameter value for
calculating distances as input to a tree search us-
ing a distance criterion. This hybrid approach can
be an effective compromise between a full search
under the maximum likelihood criterion (which
may be computationally infeasible) and an arbi-
trary choice of parameter values using a distance
criterion.

TREATMENT OF UNDEFINED VALUES Distance val-
ues become undefined if the apparent sequence
divergence exceeds the maximum possible (true)
distance under the assumed model of evolution.
For example, in the JC model, complete random-
ization of sequences would lead to D = 0.75 G.e.,
even for two random sequences, one-fourth of
the nucleotides are expected to be identical by
chance). If the observed dissimilarity equals or
exceeds 0.75 due to sampling error or violation
of the model, the logarithm in equation (20) can-
not be taken. In this situation, it is probably wise
not to proceed without taking steps to avoid
problems due to excessive saturation. If only one
or two sequences are causing the problem, they
can be eliminated from the analysis. If the prob-
lem is mostly due to high rates of transition-type
differences, transversion-only distances (or max-
imum likelihood distances with a high transi-
tion:transversion ratio) can be employed. As a
last resort, any undefined distances can be re-
placed by an arbitrarily large distance value,
such as twice the maximum observed distance.

ACCOMMODATING AMONG-SITE RATE VARIATION IN
DISTANCE CORRECTIONS Distance corrections
that assume equal rates of change across sites
will be affected by the same problem that com-
plicates maximum likelihood analysis when
among-site rate heterogeneity exists: distances
will underestimate the actual number of substi-
tutions (Golding, 1983). Fortunately, this rate
heterogeneity can be accommodated without
too much difficulty. For maximum likelihood
distances, any of the model variations described
under “Accommodating Rate Heterogeneity
Across Sites” in the “Maximum Likelihood
Methods” section can be applied directly. If rates
are assumed to follow a gamma distribution,
special modifications of the distances described



above are available for the JC and K2P models
(Jin and Nei, 1990) and TrN models (Tamura and
Nei, 1993). Although not noted by these authors,
these “gamma” distances can be obtained from
the usual distances simply by replacing the
function In(x) with (1 — x"1/%) in the original
formulas, where o is the shape parameter of the
gamma distribution (this function is the inverse
of the moment generating function for the distri-
bution). In fact, this method also works for most
(if not all) of the other time-reversible distances
(Waddell and Steel, 1995; Lewis and Swofford,
unpublished; see Swofford, 1996). For example,
the general time-reversible distance with a dis-
tribution of rates across sites can be written as
dyy = —trace(Tl [M™(IT"'F)]}, where M1 is the
same function used for the Jin-Nei and
Tamura—Nei distances in the case of the gamma
distribution, but can be the inverse of the
moment-generating function for other distribu-
tions as well (Waddell and Steel, 1995). The
value of o must be determined independently
using one of the methods outlined above.
Choice of an o value based on results from pre-
vious studies is also an option (e.g., Kumar et
al., 1993), although evidence is accumulating
that levels of rate heterogeneity vary widely
among different genes, regions of genes, and
organisms.

The invariable sites model (see above) can
also be applied to distance estimation by remov-
ing a certain fraction of the constant sites from the
data matrix. The easiest way to accomplish this is
to subtract the constant ¢N/4 from the diagonal
entries of n; in matrix (19) (and adjusting N ac-
cordingly) before calculating the distance, where
¢ is the desired proportion of invariable sites and
N is the total number of sites (Waddell, 1995). If
base frequencies are unequal, it is preferable to
subtract m¢N from the kth diagonal element of the
divergence matrix, where m; is the frequency of
base k. When base composition is not homoge-
neous throughout the tree, or in other situations
where constant sites have a different composition
than the variable sites, the base frequencies used
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in this correction should be estimated from the
constant sites alone.

LOG-DETERMINANT DISTANCES The models
described above for maximum likelihood and
distance estimation assume that the substitution
probability matrices remain constant throughout
the tree (i.e., they are stationary) and that they
have the property of time reversibility (which
jointly imply that base frequencies remain at a
constant, equilibrium value). The LogDet (Steel,
1994a; Lockhart et al., 1994) or paralinear dis-
tance (Lake, 1994) is a transformation that yields
additive distances under a much wider set of
models. Perhaps most importantly, this transfor-
mation is robust to changing base composition
(e.g., GC bias) among the taxa being studied—a
potential source of systematic error if stationary
models are assumed. The LogDet transformation
will yield an additive distance (in expectation)
under any Markov model of evolution (see
above) as long as sites evolve identically and
independently and rates of substitution are equal
across sites. This general Markov model is
described by a rooted tree, where the root can
have any base composition (as long as all states
have a non-zero frequency). There are no con-
straints on the parameters in each substitution
probability matrix P(t) (all 12 substitutions are
free to occur at different rates), and P(t) can be
different for each branch or at different points
along the same branch. Each P(t) matrix implies
its own set of stationary base composition val-
ues, so these are also allowed to vary throughout
the tree. These assumptions correspond to those
of the maximum likelihood model proposed by
Barry and Hartigan (1987a).

The basic form of the log-determinant dis-
tances is

d,, =~In(det E) (22)

(Steel, 1994a), where “det” refers to the determi-
nant* of a matrix and F,y is an r x r divergence
matrix for sequences X and Y (e.g., equation 19)

“The definition of the determinant of a matrix is beyond the scope of this chapter. Introductions to matrix algebra
can be found in many statistics texts or any linear algebra text. An excellent introduction for biologists is Bulmer

(1994, p. 298 F.).
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with r equal to the number of character states
(e.g., r = 4 for DNA sequences). For identical se-
quences, Ay should be set to zero, although in
practice, equation (23) is used instead, in which
case no explicit treatment is needed for this case.
If evolution proceeds according to the model de-
scribed in the above paragraph, distances calcu-
Jated using equation (22) will have the property
of tree additivity (apart from sampling error), but
in general, this expression cannot be used to esti-
mate the number of nucleotide substitutions per
site (evolutionary distance). However, for sta-
tionary models, the value obtained from (22) can
be scaled to a distance that is proportional to the
evolutionary distance using the formula

LogDet:
= [— In|det ny) +1 ln(dEt HIHY)]/ i
det ny ] (23)

(

where II, and II; are diagonal matrices of the
character-state frequencies in sequences X and Y,
respectively (Lockhart et al., 1994). The expected
value of this distance will be equal to the mean
number of substitutions per site if base frequen-
cies are all equal, in which case

yy

}é ln(det l'lxl'[y) =—rlnr

Otherwise, it will overestimate the evolutionary
distance by a constant factor that becomes larger
as base composition becomes more unequal
(Waddell, 1995). Note that equation (23) is equiv-
alent to Lake’s (1994) paralinear distance except
for the scaling by 1/r. (Lake did observe, how-
ever, that his paralinear distance was approxi-
mately equal to r times the mean number of sub-
stitutions per site.) For non-stationary models,
(23) tends to overestimate the mean number of
substitutions, but it can also be an underestimate,
depending on the base composition at internal
points of the tree. Even under non-stationary
models, however, the LogDet distance often pro-
vides better estimates of the number of substitu-
tions per site than any of the standard distance

transformations, because non-stationary base
composition can lead the standard formulas to
over- or underestimate the true distance by large
amounts (Waddell, 1995). Thus, as a general rule,
the branch lengths of a tree estimated using the
LogDet distance should be considered just as use-
ful as any other distance when base frequencies
are not homogeneous.

A concern with using any distance transfor-
mation derived from a very general model is
that it will suffer from inflated sampling errors,
making it less reliable for tree selection unless
sequences are very long. This concern appears
to be unjustified, however, as the sampling vari-
ance of LogDet distances can approximate that
of even the most simple (but least general)
distance transformations described above (Wad-
dell, 1995). For example, when applied to sim-
ple, stationary models with equal base fre-
quencies, the variance of the LogDet distance
(Lockhart et al., 1994) becomes equal to that cal-
culated by the usual variance formulas. Further-
more, four-taxon computer simulations (D.L.
Swofford, P.O. Lewis, and PJ. Waddell, unpub-
lished) show that when data are simulated ac-
cording to any of the models in the GTR family
(Figure 11), the minimum evolution method us-
ing LogDet distances leads to recovery of the
correct tree about as often as using other dis-
tance measures—including the distance specific
to the simulation model—for all but very short
sequences (<200 bases).

The LogDet can be applied to amino acid se-
quences (Lake, 1994 gave a four-taxon example),
or even using each of the 61 non-stop codons as
character states. The variance of the LogDet may
become more of a problem in these situations, so
it may be useful to group some states together
(e.g., into the six main amino acid classes). An-
other problem is that a state may be entirely ab-
sent in one or more of the sequences. In this case,
the determinants of F,y, and of IL, and/or IT, will
be zero (yielding an undefined distance when the
log is taken). The best way to deal with this situa-
tion remains to be determined; possible solutions
include removing the state from the F,, matrix al
together (if the state is absent from all of the se-
quences), pooling this state with another, or set



ting the corresponding elements of F,y to some
small value such as 1/(2N).

Lockhart et al. (1994) found that use of
LogDet distances yielded more believable trees in
three examples for which nucleotide composition
was variable over taxa. However, a weakness of
the standard LogDet transform in real applica-
tions is that it is no more robust to unequal sub-
stitution rates at different sites than are other dis-
tance measures (Barry and Hartigan, 1987b;
Lockhart et al., 1994; Lake, 1994). Lockhart et al.
(1994) reported that for some data sets, reasonable
trees could be obtained only after eliminating sites
that were uninformative according to the parsi-
mony criterion, and suggested that inclusion of
sites that were highly unlikely to change might be
the cause of the problem. Unfortunately, unlike
the less general distance transformations, LogDet
distances cannot be directly modified to take ac-
count of a specific distribution of rates such as the
gamma distribution.

Waddell (1995) has shown that by subtracting
an appropriate proportion of invariant (constant)
sites from the diagonal elements of Fyy (see “Hie-
commodating Among-Site Rate Variation in Dis-
tance Corrections,” above), LogDet distances can
become nearly additive even if the true distribu-
tion of rates across sites follows a continuous dis-
tribution such as the gamma. Methods of estimat-
ing the proportion of invariable sites for
maximum likelihood and other distance transfor-
mations perform well, whereas simple removal of
parsimony-uninformative sites tends to be too se-
vere. However, as base composition becomes
more heterogeneous over taxa, sites with different
rates of change also change base composition
with respect to each other. Thus, it may be impor-
tant to estimate base frequencies using only the
constant sites, rather than the full data set, when
calculating the proportion of sites to remove from
the diagonal elements of Fyy. Removing constant
sites is helpful and may adequately correct for the
problem of rate heterogeneity plus shifting base
composition (Waddell, 1995), but a better strategy
may be to classify sites into a few distinct rate
classes, apply the LogDet transform to each, and
sum these separate estimates to obtain the final
distance.
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WHICH SEQUENCE DISTANCE TRANSFORMATION IS
BesT? As the above discussion indicates, dis-
tance analysis of sequence data requires choos-
ing a distance transformation from a rather over-
whelming number of possibilities. Ideally, we
would always choose the most general distance
available, as this distance has the smallest chance
that assumptions corresponding to particular
restrictions of the underlying model will be vio-
lated. Currently, this criterion would lead to a
tradeoff between the LogDet/paralinear distance
(which requires special treatment if there is sub-
stantial among-site rate variation) or the GTR
(general time-reversible) distance with an appro-
priate correction for rate heterogeneity (Waddell
and Steel, 1995). However, generality often
comes at the price of increased variance, and
many simulation studies have indicated that
simpler distances based on models that are
known to be violated may nonetheless perform
better for phylogenetic inference than distances
based on the same model being used to generate
the data (e.g., see Nei, 1991 and references cited
therein). For example, when sequences are rela-
tively short, use of simple dissimilarity (p-dis-
tance) or the JC distance can lead to correct
recovery of the true tree more often than the K2P
distance, even when there is a fairly strong tran-
sition/transversion bias.

It is difficult to provide simple prescriptions
for the choice of a distance measure (but see Ku-
mar et al., 1993, for one such set of recommenda-
tions). In general, we believe that additional stud-
ies will confirm preliminary simulations that
indicate little variance-inflation problem with
LogDet/ paralinear distances when all sites evolve
at the same rate (see “Log-Determinant Dis-
tances,” above). Because of their generality (in-
cluding their robustness to base composition bi-
ases), log-determinant distances are probably
preferable to other, more restricted, distances that
do not incorporate corrections for among-site rate
variation. Beyond that, we offer Kumar et al.'s
(1993, p. 29) rule of thumb: “As a general rule, if
two distance measures give similar distance val-
ues for a set of data, use the simpler one because it
has a smaller variance.” Of course, the longer the
sequence length, the less variance considerations
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dominate the choice of a distance. With long se-
quences (e.g., >2000 bases), it may be more prof-
itable to emphasize closer modeling of the substi-
tution process than to worry too much about
variance.

Transformation of Allozyme and Restriction
Endonuclease Data to Distances

A large number of measures have been proposed
for transforming allelic and genotypic frequency
data to genetic distances (S. Wright, 1978); we will
treat only a few of the more commonly used ones
here. Historically, the most frequently used ge-
netic distance has been that of Nei (1972, 1978).
Let x; and y; be the frequencies of the ith allele at a
particular locus in taxa X and Y, respectively. Nei's
(1972) standard genetic distance can then be de-
fined as

Dy ="1n(IXY/\HX]Y) (24)

where Jx, Jy, and Jxy are the arithmetic means
across loci of Tx?, Ty?, and Zxy;, respectively, with
summations over alleles at each locus. Equation
(24) gives a biased estimate when sample sizes are
small; an unbiased estimate of the standard dis-
tance is obtained by replacing Zx? and Zy* with
(2nxEx2-1)/(2nx —1) and @nyZy? —1)/(2ny - 1),
respectively (Nei, 1978). Dy is intended to mea-
sure the number of codon substitutions per locus
that have occurred after divergence between a
pair of populations (taxa). However, this interpre-
tation is valid only if the rate of gene substitution
per locus is uniform across both loci and lineages,
an assumption that is almost certainly unrealistic
(Hillis, 1984) for any systematically informative
data set. Hillis (1984) demonstrated that violation
of the assumption of rate uniformity leads to a pe-
culiar property of Dy when it is applied in sys-
tematic studies involving interspecific compar-
isons. He showed three hypothetical two-locus
cases in which, for each case, two taxa had iden-
tical allele frequencies at one locus and shared no
alleles at the second locus. However, due to dif-
ferent levels of polymorphism within the two
taxa, Dy varied from 0.41 to 1.10. Hillis (1984) con-
sequently recommended the following modifica-

tion to Dy to alleviate the problems created by
non-uniform rates of change:

D&z—ln[g(inyi/m)/L]

where L is the total number of loci; that is, the dis-
tance is computed from the arithmetic mean of
the single-locus identities. (Although Hillis, 1984,
did not specifically recommend it, an unbiased
version of D, could be obtained by a substitution
equivalent to that for Nei's original distance.)

Nei’s distances (in either their original form
or as modified by Hillis, 1984) are non-metric in
that they frequently violate the triangle inequal-
ity. Farris (1981) has heavily criticized it for this
reason, arguing that when a distance measure is
non-metric, it is meaningless to fit branch lengths
under an additive-tree model in which branch
Jengths are interpreted as amounts of evolution-
ary change. Felsenstein (1984) countered that if
branch lengths were interpreted as expected,
rather than actual, amounts of change, Farris’s
objections were moot. While we do not wish to
become entangled in this controversy (see also
Farris, 1985, 1986a; Felsenstein, 1986), we basi-
cally agree with Felsenstein, without going so far
as to recommend routine usage of Nei's distance.
If Nei’s model of evolution is appropriate (which
is obviously open to question), then the non-
metricity of his distance is not in itself a reason to
shun it.

Another widely used distance measure is that
of ].S. Rogers (1972):

Dy :%g'\JZ(xi_yi)z/z

Rogers’ measure has the virtues of simplicity and
an easily interpretable geometric basis. Except for
a scaling factor, it is simply the Euclidean distance
between the allele frequency vectors for each lo-
cus of the two taxa being compared. However,
Rogers’ coefficient shares with Nei's the undesiz-
able property of being too heavily influenced by



within-taxon heterozygosity (5. Wright, 1978;
Hillis, 1984); the distance between two taxa that
are fixed for alternate alleles exceeds that between
two taxa in which one or both are heteroallelic but
have no alleles in common.

An alternative Euclidean measure that over-
comes this limitation is the arc distance of Cavalli-
Sforza and Edwards (1967), which is given by

D,.= (1/1)Y,(20/7)

L

where 6= COS_IZM. Thus, if no alleles are
shared between a pair of taxa, the distance takes
its limiting value of one regardless of the variabil-
ity within either population. Perhaps more im-
portantly, this distance incorporates an angular
transformation of gene frequencies in an attempt
to make the variances of the transformed fre-
quencies independent of the ranges in which they
fall. This transformation has the effect of stan-
dardizing the distance with respect to random
drift, so that the rate of increase in genetic dis-
tance under drift is nearly independent of the ini-
tial gene frequencies. The Cavalli-Sforza and Ed-
wards (1967) arc distance and its relative, the
chord distance, thus incorporate some realistic as-
sumptions about the nature of evolutionary
change in gene frequencies without the undesir-
able properties of the Nei (1972, 1978) and the
Rogers (1972) measures.

The simplest distance of all is the Manhattan
distance (attributed to Prevosti by S. Wright,
1978), which for a single locus equals

1
Dy =721"i _yi|

An arithmetic mean is used to combine distances
across loci. Unlike the Cavalli-Sforza and Ed-
wards (1967) distances, this method gives equal
weight to a given frequency difference, regardless
of where it occurs on the scale from zero to one. It
is not sensitive to intrataxon variability, however.

To transform restriction-site data to distances,
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Nei and Li’s (1979) method for estimating the
number of nucleotide substitutions that have oc-
curred since divergence of a pair of taxa X and Y
from a common ancestor is typically used. An es-
timate of the proportion of ancestral restriction
sites that have remained unchanged until the pre-
sent is given by

S= 2nyy /(”x + nY)

where 1,y is the number of identical sites shared
by the two taxa, and ny and ny are the total num-
ber of restriction sites in taxa X and Y, respectively.
From this quantity we can estimate the mean
number of substitutions per nucleotide site using
either of the following:

d=—(In S)/r (25a)

d=—(3/2) 1n[(4§ L/ 1) / 3] (25b)

where r is the length of the endonuclease recogni-
tion sequence (usually 4 or 6). The first formula
(25a) treats original restriction sites restored by
back-mutations as new sites, and was first pro-
posed by Upholt (1977). The second formula
(more correctly) considers the reverted sites as
identical to the original sites.

Li and Graur (1991) suggested estimating the
proportion of nucleotide differences as

p=1-8r

and then using the standard Jukes—Cantor dis-
tance transformation to estimate the number of
nucleotide substitutions (i.e., substitute p for D in
equation 20). A related method of estimating the
number of nucleotide substitutions per site from
restriction site data via maximum likelihood has
been developed by ]. Felsenstein (available as a
test program “Restdist” from same location as
PHYLIP; see Appendix). His method assumes a
Kimura two-parameter model of evolution e,
equal base frequencies with a potentially different
rate of transitions relative to transversions) and
can include a correction for among-site rate varia-
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tion according to a gamma distribution (see “Ac-
commodating Among-Site Rate Variation in Dis-
tance Corrections,” above). S 1is used to estimate
the proportion of restriction sites that have been
preserved by a pair of species, and §!7 then rep-
resents the corresponding fraction of similarity at
each of the r sites in the recognition sequence. The
distance value that predicts this fraction of similar
sites under the chosen model and parameter set-
tings is then estimated by maximum likelihood.

The methods described above are appropriate
when all restriction endonuclease recognition
sites are the same length. For studies involving
enzymes with different sizes of recognition se-
quences, more complicated methods developed
by Nei and Tajima (1983) can be used, although
we will not describe them here.

Nei and Li (1979) also addressed the problem
of estimating nucleotide substitutions from re-
striction fragment data. However, these estimates
are reliable only if the actual number of substitu-
tions has been low (e.g., the samples are restricted
to conspecific populations). Consequently, we will
not describe their procedures for dealing with
fragment data; the interested reader can consult
their paper directly.

Immunological and Nucleic Acid Hybridization
Data

When analyzing immunological measurements, it
is usually assumed that, within certain limits, the
measured immunological distance (ID) increases
linearly with the number of amino acid differ-
ences in the proteins being compared. The con-
stant of proportionality depends on the number
of independent binding domains and on the frac-
tion of amino acid changes that alter a domain
sufficiently to inhibit antibody binding. Thus,
there is significant uncertainty in the exact scaling.
If we knew the scaling, we would apply a correc-
tion for superimposed amino acid replacements.
This is of little practical importance, however,
since the amount of divergence being measured is
quite small, so any correction would also be small.
We suggest equating evolutionary distance to the
immunological distance—that is, assume that d =
ID for each pair of proteins.

Hybridization data and their transformation
to amount of difference in the DNAs are dis-
cussed extensively in Chapter 6. These data can be
corrected for superimposed base changes by the
methods discussed above.

Model-Based Corrections for Character
Data: Hadamard Conjugation

The Hadamard conjugation, or spectral analysis
(Hendy and Penny, 1993), offers another frame-
work for taking superimposed changes into ac-
count. It will not be possible to provide a com-
plete description and justification of this family of
methods in the space available, so we will instead
try to provide a clear explanation of the basic
methodology. We begin by describing another
model of character change introduced formally by
Cavender and Felsenstein (1987). The Caven-
der—Felsenstein model is essentially a two-state
equivalent of the Jukes—Cantor (1969) model.
Each of the two states (0 and 1) are assumed to oc-
cur at equal frequency, and the probability of
change from state 0 to state 1 is equal to the prob-
ability of change in the opposite direction. For ex-
ample, this model might apply if we pool the
purines (A and G) into one character state (0) and
the pyrimidines (C and T) into another character
state (1).

Revisiting the Felsenstein Zone

Consider the problem of calculating the probabil-
ities of obtaining the various character patterns on
a tree such as that shown in Figure 16A, which
corresponds to one of the examples used by
Felsenstein (1978a) to demonstrate the potential
inconsistency of parsimony. Let Pj; represent the
probability of each possible pattern, where 1, j, k,
and [ are the states (0 or 1) found in taxa 1, 2, 3,
and 4, respectively. These pattern probabilities can
be determined using the same system described
under “Calculating the Likelihood of a Tree.” As
an example, let us evaluate the probability that
the pattern of Figure 16B (0011) will evolve under
the conditions of the Cavender—Felsenstein
model. We first note that because of the time-re-
versibility assumption, we can re-root the tree at
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Figure 16 Calculation of the probability of observing a
given pattern of character states on a tree. (A) An un-
rooted tree for four taxa with probabilities of character
differences x or y along each branch. (B) Tips of tree la-
beled by character states in the pattern of interest. (C)

an arbitrary internal node (Figure 16C), and then
sum the probabilities of each of the four configu-
rations of states at the two internal nodes (Figure
16D). That is, for each scenario, we multiply the
prior probability of the basal state (= 1/2 in this
case) times the product of the probabilities of the
various changes (or non-changes) implied by each
reconstruction. Because of the symmetry of the
branch lengths used here, the probability (Py190) of
the other pattern that supports the tree of Figure
16A is equal to Pyoyi- Thus, the probability of a
character pattern evolving that supports the true
tree is

Pyops + Pioo = ¥1 - 0)1-y(x + D+x%%>  (26)

Tree re-rooted at an arbitrary internal node. (D) Calcu-
lation of the probability of the pattern shown in (B). (E)
Calculation of expected proportion of characters that fa-
vor tree (A). (F) Calculation of expected proportion of
characters that favor the tree grouping taxa 1 and 3.

where x is the probability of a character-state
change along the “long” branches and y is the cor-
responding probability for the “short” branches.
Equation (26) is equivalent to one given by
Felsenstein (1978a). A similar derivation reveals
that the probability of a pattern evolving that sup-
ports the tree grouping taxa 1+3 and 2+4 is

Pyi01 + oo = V(1 - A - y)(x + 1)+ 2*(1-y)°

Felsenstein (1978a) used these results to show that
for many values of x and y (x > y), the probability
of evolving character patterns that favor an incor-
rect tree exceeds that of patterns supporting the
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true tree. For example, if x=0.3 and y = 0.06, (A) Bl = 1 1) gosn) = H® H®
1 -1/ H )
Py + Pyaoo = 0:06(0.7)(0.94%(1.3) +
(0.3)2(0.06)° = 0.048264 & P 1111
= 2 1-1 141
Foron + Puonp = 0.067(0.7)0.94)01.3) + HP = (Hm _Hm) =11 114
(0.3)%(0.94)° = 0.077832 f<i=1 1
Thus, a sample of 1000 characters will, on aver- Figure 17 Definition of Hadamard matrices. A
age, contain 30 more characters favoring an incor- Hadamard matrix H is a square matrix whose entries
rect tree than the true tree (78 versus 48). are all 1 or —1, and with every row (and column) or-

thogonal to every other row (and column). (A) Basic

di tli i
The tedious strategy outlined in T geive form of a Hadamard matrix, and recursive formula for

paragraph could be used to calculate the proba- merating the next larger matrix. (B) Example calcula-
bilities of any of the 24 = 16 possible ch : B o itk o :
ties of any of the 2* =16 possible character pat- ton of a matrix with four rows and columns from the
terns for the four terminal taxa. Furthermore, it previous matrix with two rows and columns.

could in principle be generalized to trees of any
size. But as there are 2T distinct character patterns

and 272 ways of generating each, this algebraic above, m = 8, and the corresponding Hadamard
approach quickly becomes unmanageable. matrix is :
Calculating Character-Pattern Probabilities via 1 11 1 1 1 1 1)

the Hadamard Conjugation i 4 1t 34 § A
Hadamard conjugation (Hendy and Penny, 1993)

provides an alternative mechanism for obtaining 1 1-4-1 1 1= -

the above pattern probabilities.” A Hadamard ma- i-1<1 1 1-1-1 1

trix (described by the nineteenth century mathe- H = 1 1 1 4§ -1 =1 =3
matician of that name) is a matrix of 1’s and —1's

; ” ; . 1 -1 -1 -1 1 -1

in a simple repeating pattern (Figure 173 Fox T

taxa and two character states, we will use a 1 1-1-1-1-

Hadamard matrix containing m = 2T-! rows and t =1 1 11 1 1 -

columns. For the example discussed in the section

*This section assumes some familiarity with matrix algebra; see many statistics texts or any linear algebra text for
introductions. Bulmer (1994, p. 293 ff.) provides an accessible overview for biologists. For now, note that the prod-
uct of a matrix A and a vector b, denoted Ab, can be obtained as in the following example:

a b c x a b c\(x) (ax+by+cz
A=|d e flb=|y|: Ab=|d ¢ f y|=|dx+ey+fz
g h i z g h ij\z) \gx+hy+iz

The inverse of matrix A, denoted A, is a matrix such that AA-1 = I, where I is an identity matrix that has 1's on the
diagonal and 0 everywhere else. For example, if

j
Al=|m
P

S
“ Q



(see Figure 17 for an explanation of how these ma-
trices are defined). The branch lengths x and y
represent the probabilities that the character states
at either end of a branch will be different (“ob-
served differences”) at a given site. We will store
these values in an m-element vector p at a posi-
tion determined by the indexing scheme shown in
Figure 18. For our example, p is defined as

0 0

X 0.3

Pol 1yl |o06

& Yy 0.06
P=tP S| |03
0 0

Pm-1 0 0

y) 0.6

The first element of this vector, py, is always set to
0. If the branch corresponding to a given index k
does not exist in the tree, py is also set to 0. Thus,
we have ps = pg = 0, because branch 5 (represent-
ing a partition separating taxa 1 and 3 from taxa 2
and 4) and branch 6 (representing a partition sep-
arating taxa 2 and 3 from taxa 1 and 4) do not ex-
ist on the tree.

Under the conditions of the model, the ob-
served differences p can be converted to “ex-
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(A) 1 3 1 2 1 2

(B) Index Partition
@,{1,2,3,4)
{1}, 12, 3,4}
{2),{1,3,4}
{1,2), (3, 4}
{3), 11,2, 4}
{1, 3}, {2, 4}
{2, 3}, {1, 4}
{1,2,3}, {4}

NS W =0

Figure 18 (A) Indexing of partitions in the Hadamard
conjugation. To label branches, root the tree arbitrarily
at the highest numbered taxon. Label as 21 the branch
leading to each tip i. Label the remaining branches by
the sum of the labels of the branches immediately
above it. (B) Each branch defines a partition or split that
is indexed by the branch’s label. Note that the partition
corresponding to any index k can be determined by de-
composing it into its binary components. For example,
with T=8 theindex90 =64 + 16+ 8 +2=26 +2*+23 +
21, corresponding to the partition {2,4,5,7},{1,3,6,8}.

then
g b elj k 1 aj+bm+cp ak+bn+cq al+bo+cr) (1 0 O
d e fllm n o|=|dj+em+fp dk+en+fq dl+eo+fr|=/0 1 0
g h i)lp q r) \gi+hm+ip gk+hn+ig gl+ho+ir) \0 0 1

Finally, multiplication of a matrix by a scalar (ordinary number) implies multiplication of every element of the

matrix by the scalar:

a b c 2a 2b 2
2A=2|d e f|=|2d 2 2f

g h i

2¢ 2h 2
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pected total changes per site” q using the formula
1
g; = —Eln(l -2p,) 27)

where g; is the expected number of changes per site along branch i. Note that this
is just a special case of the general Poisson-correction formula (21) with B=1/2.

Define the branch-length spectrum ¥(T) as

~1.108040

m-1 0.458145

‘Z{‘ﬁ 0.063917

@ 0.063917

1M =1 o | 7| 0458145
5 0
Gm-1 0

0.063917

with g, through g7 defined using equation (27). In some cases (e.g., simulation
studies), it may be more convenient to start with the ¥ vector directly, in which

case

_ i
p=1-t— (28)

Now let s(T) be the expected sequence spectrum—a vector where each element sy is
the predicted proportion of the characters supporting each possible bipartition of
the taxa (division into two subsets; see Figure 18 for how bipartitions are in-
dexed). For example, s is equivalent to Felsenstein’s (1978a) Poox1 + P1igo, and S5 is
equivalent to Pgio1 + P;010- The values of s(T) can be obtained using the following

Hadamard conjugation:

s(T) = H™! exp[Hy(T)] (29)

where the exponential function is applied separately to each element of Hy. Let us
apply formula (29) to our example. First, the generalized distance vectors p and
r are calculated as follows:

0
~1.17196
—0.38350
_1.04412
P =HY =1 ;0012 (30)
—1.96041
117196

—2.08825




r = explp) =

£fo
2Pl
eP2
o3
o4
e’s
ef6

ef7

1
0.30977
0.68147
0.35200
0.35200
0.14080
0.30977
0.123%0
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(31

Each entry in p represents ~25;, where S; is a corrected generalized distance. The
exponential transformation then converts each p; to an observed generalized dis-
tance, 7,=1-2d; . (They are called “generalized” distances because they represent
the lengths of path sets that correspond not only to distances between pairs of
taxa, but also to groups of non-intersecting paths involving even numbers of
taxa.) The expected sequence spectrum s(T) for tree T is then obtained as follows:

_g-l._ (L
s(T) =H r_(mﬂ)r

(The simple form of the inverse of a Hadamard matrix, shown above, is an im-
portant advantage of the method.) For our example,

&(T) = %

O Y T QR GG U S
Yy

0.408712
0.177096
0.041928
0.048264
0.177096
0.077832
0.027144
0.041928

1
1
1
1

1 1 1

-1 1 -1

1 -1 -1

-1 -1 1

-1 -1 -1

1 -1

-1 1 1

1 1 -1
(Poooo + Pran
Piooo + Fornn

Poioo + Pron
Pr100 + Poonn

Pooro + P
Pio10 + P
Pioo1 + Forto

Py 110 + Fooor

1 3
0.309760
0.681472
0.352000
0.352000
0.140800
0.309760

0.123904

(32)

(33)

The probabilities corresponding to Pyip0 + Poor: and Pyyo1 + Pigro (53 and s5, respec-
tively) correspond exactly to those calculated algebraically in the preceding sec-
tion. Hadamard conjugation has strong advantages over such algebraic calcula-
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tions, however. First, we have not only calculated
the probabilities of characters supporting these
two bipartitions, but all of the other bipartitions
as well. Second, the method is general, and ex-
tends automatically to the calculation of expected
character-state distributions even for more realis-
tic evolutionary models and large trees. (Note,
however, that the exponential growth of the size
of the vectors—e.g., 524,288 elements for 20
taxa—puts a practical limit on tree size.) For in-
stance, Hendy and Penny (1989) used this feature
to show that parsimony could be inconsistent un-
der a molecular clock; Bull et al. (1993a) used it to
examine the consequences of combining different
sources of data; and Charleston et al. (1994) used
it for tree-selection simulations.

Invertibility of the Hadamard Conjugation
Although the prediction of pattern frequencies as
outlined above can be useful, the power of the
Hadamard conjugation in phylogenetic applica-
tions lies in its invertibility. Specifically, all of the
above operations can be performed in the oppo-
site direction: starting from an observed sequence
spectrum § (pattern frequencies observed in the
data), we can work back to a conjugate spectrum
¥, which is an estimate of the underlying branch-
length spectrum Y 7). To demonstrate the inverse
operations, suppose that the observed sequence
spectrum § corresponds exactly to s(T) as calcu-
lated in equation (33). Solving for r in equation
(32) yields

1
0.309760
0.681472
. 10.352000
r=Hs= (34)
0.352000
0.140800
0.309760

0.123904

and since the log function is the inverse of the ex-
ponential,

In 1, 0

Inn| |-11719
Inr| |-038350
Inr| |-1.04412

p =@ =1 |~ |-10aar2| ©°

Inr| |-1.96041
Inr| |-11719
inr) (-208825)

Thus, the full Hadamard conjugation in this di-
rection is

¥ = H'In(HS) (36)
The conjugate spectrum ¥ is evaluated as

1.108040
0.458145
0.063917
) - " 0.063917
T =Hp= (EH)" ~ | 0458145 |  ©B7
0
0
0.063917

Finally, use of formula (28) to convert our estimate
of the expected number of changes ( 7;) to the
number of observed differences predicted for each
branch ( 7;) leads to exact recovery of the original
branch lengths (x = 0.3, y = 0.6).

Application to Real Data

Even if the assumptions of our evolutionary
model were perfectly satisfied, we cannot expect
the observed sequence spectrum $§ to correspond
exactly to the true spectrum s, because the se-
quences obtained in an actual study represent a fi-
nite sample and therefore are subject to sampling
error. To illustrate the use of Hadamard conjuga-
tion in practice, we will draw a sample of charac-
ters that have evolved according to our model;
this sample will be used to represent a set of ob-
served sequence data that have evolved according
to the model.



The § vector below shows the results of a
random sample of 1000 characters (using the
pseudorandom number generator in Mathemat-
ica®) according to the expected sequence spec-
trum in equation (33).

0.418
0.168
0.053
0.048
0.174
0.076
0.030
0.033

w>
Il

As expected, parsimony analysis of this data set
will choose an incorrect tree, as the 48 characters
supporting the true tree ( 5;) are contradicted by
76 characters ( 5;) supporting the tree that groups
taxa 1 and 3. Solution of equation (36) yields

-1.05917
0.41125
0.09269
0.06348
0.43201
0.01716
0.00956
0.03303

=20
Il

If the transformed data conform to a treelike pat-
tern, all but 2T — 3 of the elements in ¥ will be
close to zero (or negative, in the case of ¥,), and
the bipartitions corresponding to significantly
positive elements will be compatible with a single
tree. In this example, ¥s and ¥, are both close to
zero. The remaining bipartitions are compatible
(all but 75 define an “uninformative” partition
splitting a single terminal taxon from the remain-
der). Thus, the tree of Figure 16A is clearly speci-
fied by the corrected data.
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CHOOSING A TREE With real data sets, the pic-
ture is seldom as clear as the above section sug-
gests, and we must use one of several methods
to choose an optimal tree based on the trans-
formed data represented by the Y vector. The
closest tree procedure (Hendy, 1991) is one com-
monly recommended method. For a given tree 1
containing K branches, it is straightforward to
find a vector q(7) that minimizes the Euclidean
distance from q(7) toY. The squared distance can
be obtained [without the need to form q(t)
explicitly] using the formula

2
[7?0'P 2?:}
Az, y)= 377+ 0/ (38)

K+1
ejee(7)

where the expressions ¢, € ¢(7) and ¢, € ¢(7) limit
the summations to those branches (= edges) that
are included in or absent from, respectively, the
tree being tested (Hendy and Penny, 1993).

The closest tree is the one that minimizes the
value of formula (38) over all possible trees, and
can be found using (for example) a modification
of the branch-and-bound algorithm of Penny and
Hendy (1987). Note that some of the ¥ values cal-
culated using formula (37) (other than ¥,) may be
negative, although this did not happen in our ex-
ample. Any tree that would include one of these
branches is automatically rejected.

For the example in the above section, the
squared distances of the three trees to ¥ are:

((1,2),(3,4)): 5.05x 104
((1,3),(2,4)): 5.01 x 103
((1,9,(2,3)): 5.41x103

Thus, the first tree is the closest tree.

Another method for choosing a tree is cor-
rected parsimony. The conjugate spectrum ¥ can
be thought of as a transformation of the original
data matrix to a new data matrix containing 271
characters (in the case of two states), each corre-
sponding to the partitions associated with a row
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of ¥. The elements of ¥ are used as character
weights, and a minimum-length tree under the
weighted parsimony criterion is sought. As noted
above, some elements of ¥ may be negative due
to lack of model fit or sampling error; these val-
ues are typically set to 0 before proceeding. Cor-
rected parsimony is always consistent under the
Cavender—Felsenstein model (Steel et al., 1993a),
unlike standard parsimony. Corrected parsimony
chooses the correct tree in our four-taxon exam-
ple, because the weight of character patterns sup-

porting the true tree (73) is greater than that of

character patterns favoring alternative trees (?75
and f’a). The simulation studies of Charleston
(1994) suggest that corrected parsimony can be
highly effective in some situations, and in general
tends to outperform the closest tree and other
methods described below.

An analogous method of corrected character
compatibility also can be employed. This method
searches for the largest weighted clique for the
same data matrix and weights used for corrected
parsimony. A clique is simply a set of mutually
compatible characters that can all fit on the same
evolutionary tree without homoplasy (e.g., Le
Quesne, 1982; Estabrook, 1983). Standard graph
theory algorithms exist for exact solution of the
weighted clique problem (e.g., Bron and Ker-
bosch, 1973). _

A final method is actually a hybrid of the clos-
est tree and character compatibility approaches.
Remember that when evolution proceeds exactly
according to the model and there is no sampling
error, 2T ~ 3 of the elements in ¥ will be positive;
the remainder (except for ¥,) will equal 0. Thus,
for any particular tree, the squared deviations
from 0 of the elements of ¥ that correspond to bi-
partitions not found on the tree is a least-squares
measure of the lack of fit:

= 3 (39)

ejee(t)

Note that equation (39) is equal to the first term
on the right-hand side of (38). The second term in
(38), although different for each tree, appears not
to contribute greatly to the discrimination among
trees (Waddell, 1995), and dropping it from the
optimality criterion allows us to use character
compatibility methods to minimize (39). Specifi-
cally, after setting any negative values in ¥ to 0,
we square each element and find a maximum
weighted clique; solution of this problem is then
equivalent to minimizing the sum of squared de-
viations for the excluded partitions from their ex-
pected value of 0. This method seems especially
promising when each 7 is divided by its esti-
mated sampling error before proceeding (yielding
the vector ¥..), which gives a form of weighted
least-squares tree selection (Waddell, 1995).

DATA EXPLORATION Apart from their use in esti-
mating trees, spectral analysis methods are use-
ful as aids in understanding the peculiarities of
partlcular data sets. Strong contradictory signals
in the ¥ vector allow the data to reject the model,
and we should explore the reasons that the cor-
rect data are not treelike if this occurs. Lack of fit
to a tree may indicate that our model is too sim-
ple (e.g., we are not accounting adequately for
rate heterogeneity across sites, or the substitu-
tion model is too restrictive). Alternatively, there
may be multiple signals due to recombination or
to non-independence among sites.

It is helpful to plot the inferred branch lengths
(¥ values) divided by their estimated standard er-
rors to see how much statistical support the “sig-
nals” really have (Waddell et al., 1994; Waddell,
1995). Another useful way of viewing the cor-
rected sequences is to plot the magnitude of each
signal in the conjugate spectrum against the sum
of its pairwise incompatibilities with all other se-
quence patterns (a support/conflict spectrum; see
Lento et al., 1995). These graphical representations
of noise in the data set allow exploration of the
factors responsible for conflicts in different re-
gions of the tree and suggest which hypotheses of
relationship should be subjected to further
scrutiny. The paper by Lento et al. (1995) provides
good examples of this approach.



Extension to Four Character States

Hadamard conjugations can be extended to han-
dle all four bases as character states under a ver-
sion of Kimura’s (1981) K3ST model, which clas-
sifies substitutions into three types: type I =
transitions; type II = transversions between A and
C or G and T; and type III = transversions be-
tween A and T or C and G (see “Models of Evo-
lution,” above). The model is generalized to al-
low the probabilities of these events to be
different for each branch of the tree. Under this
model there are 47 /4 = 471 distinct sequence pat-
terns (i.e., patterns such as AAGG, CCTT, GGAA,
and TTCC are equivalent). These patterns are in-
dexed using a modification of the binary coding
for the two-state case (see Hendy et al., 1994;
original derivation due to Székely et al., 1993)
that define quadripartitions of the taxa (partitions
into four or fewer subsets). Application of the

Hadamard conjugation to this observed sequence -

spectrum using formula (36) corresponds to a
correction for superimposed substitutions ac-
cording to the generalized K35T model. Within
the corrected data (conjugate spectrum ¥), there
are three sets of 277! entries, as for the two-state
case. These elements correspond to the number
of transitions, type II transversions, and type III
transversions, respectively. The remaining ele-
ments are expected to be 0 under the model,
again as in the two-state case. We can use closest
tree, corrected parsimony or compatibility, or
least-squares methods to select a tree from this
spectrum.

Another promising way of treating four-state
nucleotide data using three separate 27-1
Hadamard conjugations has also been developed
(Waddell and Hendy, 1995). These calculations
- give essentially the same results as the much more
computationally expensive (order 47-!) approach
of Hendy et al. (1994).

Subcases of the K3ST model can be handled
by averaging the patterns in the observed data
that are equivalent under the more restricted
models (Waddell, 1995). For example, if we aver-
age the type Il and type III transversions, we force
the corrections to be made according to a general-
ized K2P model, and if we average all substitu-
tions we obtain a generalized JC correction. This
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pooling of substitution types reduces stochastic
errors if the simpler models are adequate.

Among-Site Rate Variation and

Maximum Likelihood

The Hadamard conjugation can be modified to al-
low for unequal substitution rates across sites
(Steel et al., 1993¢; Waddell, 1995; Waddell and
Penny, 1996b) in much the same way as the cor-
rections are made for distances (e.g., G.J. Olsen
1987; Jin and Nei, 1990; see above). To estimate
pattern probabilities assuming a gamma distribu-
tion, we need only replace the exponential func-
tion in the Hadamard conjugation (formula 29)
with [(a— p) /o] % where «ais the shape parame-
ter. If going from observed sequence data to the
corrected sequence spectrum using fomula (36),
we replace the logarithm function with o(1 -
r1/9). For practically any distribution (e.g., the
log-normal) the appropriate path-length correc-
tion can be estimated numerically (as in G.].
Olsen, 1987) if an analytic form does not exist as
for the gamma distribution.

Recall that for any tree T and branch-length
spectrum ¥, we can obtain the associated vector
of expected pattern frequencies s using formula
(29). Since the log likelihood of the tree is given
by

In L=Zﬁ-1n 5;
:

where f; is the frequency of sites with pattern i in
the data, and s; is the probability of this pattern
under the model, Hadamard conjugation pro-
vides an alternative algorithm for maximum like-
lihood estimation. It is especially useful for maxi-
mum likelihood tree inference with among-site
rate heterogeneity using continuous distributions
such as gamma (Waddell, 1995; Waddell and
Penny, 1996a). Although limited to the general-
ized K35T model and its submodels, this ap-
proach can be much faster than that of Z. Yang
(1993).

Statistics on the Corrected Sequences
It is straightforward to obtain the variance—co-
variance matrix of the corrected sequence data via
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the delta method approximation (Waddell et al.,
1994). The simulations by Waddell et al. (1994)
showed that the covariance matrix derived in this
way gives nearly unbiased results, whereas boot-
strap resampling tends to yield overestimates. As
long as a pattern occurs five or more times in the
observed data, it is reasonable to treat the corre-
sponding corrected pattern (or branch length) as
normally distributed, resulting in straightforward
confidence intervals, or tests of the hypothesis
that its true value is zero. The covariances of cor-
rected patterns can also be thought of as covari-
ances of tree branch length estimates. Generally,
the more changes per site there are on the tree, the
more strongly branch lengths become either posi-
tively or negatively correlated (Waddell et al.,
1994). (These interdependencies tend to make the
iterative search for a maximum likelihood solu-
tion slower.) Another conclusion from this study
is that long branches, even when not biasing the
topology of the tree, nonetheless cause a large in-
crease in the variance of internal branch length es-
timates, reducing the reliability of tree selection.
It is possible to estimate a confidence interval on
transition:transversion ratios or the shape para-
meter of distributions used to model among-site
rate variation (Waddell, 1995).

The Distance Hadamard
The last part of the Hadamard conjugation (from
p toY) can also begin from a matrix of pairwise
distances (either corrected or uncorrected)
(Hendy and Penny, 1993). We would like to esti-
mate a branch-length spectrum (now called ¥, )
and choose an optimal tree from this spectrum,
analogously to the procedure used for sequence
data. We input the distances at the level of the
generalized distance vectors p (formula 35). How-
ever, a complication arises because these vectors
include elements corresponding to path sets in-
volving more than two taxa; see Hendy and
Penny (1993) for a method of estimating these
path-set lengths. The ¥, vector resulting from for-
mula (37) then serves as the basis for choosing a
tree as described above.

Simulations and analytic calculations have
shown that the variances of entries in the ¥, vec-
tor resulting from this approach are lower than

the ¥ values from the usual Hadamard conjuga-
tion under the same model, because the distance
method of estimating path-set lengths involving
more than two taxa has lower variance (Waddell,
1995). Consequently, tree selection using this vec-
tor tends to be more reliable (Charleston, 1994).
However, the distance Hadamard does not seem
to be as sensitive as the Hadamard conjugation at
detecting violations of the model’s expectations.
The studies of Lento et al. (1995) and Lockhart et
al. (1995b) suggest that this method is a useful ex-
ploratory tool when trying different distance
transformations, although more study is needed
on how directly a pattern from the distance
Hadamard can be treated as evidence for specific
sequence patterns.

Lake’s Method of Invariants

Rationale
As discussed earlier in this chapter, the presence
of more than one long, unbranched lineage in an
analysis can lead to systematic error in the ab-
sence of perfect compensation for superimposed
substitutions. In the context of parsimony, the ho-
moplasies along the long branches can over-
whelm the informative character changes along
the internal branch(es) of the tree (see Figure 8
and the section “Parsimony and Inconsistency”).
Ideally, we would like to distinguish informa-
tive changes from homoplasies. In parsimony and
maximum likelihood analyses, the addition of
new sequences whose branch points subdivide
the longest lineages (i.e., representation of taxa
that are specifically related to the most divergent
taxa already in the tree) will tend to accomplish
this goal. The effect is illustrated in Figure 19
where adding sequences A’ and B’ to the tree
would reduce the effects of homoplasies along the
branches leading to A and B. Of course, the prac-
tical utility of this approach requires that appro-
priate taxa exist, that their identities are known,
and that the corresponding sequence data exist or
can be generated. A second method of reducing
the effects of homoplasy is to confine the analysis
to the most conserved sequences (both on the ba-
sis of the overall conservation of the molecule and
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Figure 19 Adding new taxa to a parsimony or maxi-
mum likelihood tree to reduce the effects of homoplasy.
Given the unrooted tree shown in heavy lines, the long
lineages leading to A and B would have the greatest
tendency to artifactually group due to parallel or con-
vergent changes in sequence. Adding taxa A’ and B’
would reduce this effect by subdividing the long lines.

by selecting the most conserved portions of the
molecule). In distance-based analyses, estimates
of the superimposed substitutions (which include
the homoplasies) can also be included.

Lake (1987a) suggested an alternative
method, which he called evolutionary parsimony,
for analyzing the branching pattern linking four
nucleotide sequences. The analysis can be derived
from the following assumptions: (1) substitutions
at a given sequence position are independent; (2)
a balance exists among specific classes of trans-
versions (a sufficient condition for this balance is
that transversions are equally likely to yield each
of the two possible substitution products, so that
C is equally likely to change to A or G, etc.); and
(3) insertions or deletions can be safely ignored.
An advantage of the method is that it does not as-
sume anything about rate equality over sites; each
site is free to evolve at a different rate than all
other sites.

If the assumptions are satisfied, then parallel
transversions in the two branches of a tree pro-
duce equal numbers of similar (type 1 in Figure
20) and dissimilar (type 2 in Figure 20) nu-
cleotides. Thus, the net effect of peripheral branch
transversions could be cancelled if the type 2
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events were subtracted from the type 1 events. A
complete accounting of possible transversions
and transitions yields the scoring system in Table
2.

Methodology
Lake’s method can be described by the following
sequence of steps:

1. Choose a quartet of aligned sequences; call
them A, B, C, and D.

2. Find the alignment positions in which two se-
quences have purines and two have pyrim-
idines.

3. Consider the three possible groupings of se-
quences (see Figure 21): AB/CD (A with B, C
with D), AC/BD and AD/BC. Call these
branching patterns X, Y, and Z, respectively.

4. Using the sequence positions at which se-
quences A and B are both purines or both
pyrimidines (and sequences C and D are both
of the opposite class of base), use the rules in
Table 2 to count the number of positions that
support and the number that counter branch-
ing order X. Call these totals X* and X-, re-
spectively. Similarly, find the support (Y*) and
countersupport (Y) for branching order Y, us-
ing the sequence positions at which se-
quences A and C have the same class of base,
and B and D have the opposite class. Finally,
find the support (Z*) and countersupport (Z-)
for branching pattern Z. If the counting has
been done correctly, the total of X+, X-, Y*, Y-,
Z*, and Z- will be equal to the total number of
positions with two purines and two pyrim-
idines, as found in the second step.

5. The net supports for branching patterns X, Y,
and Z are

X=X+t-X (40a)
Y=¥t<¥ (40b)
Z=2Y-7Z (40c)

The support for two of the branching patterns
should be near zero, while the remaining
branching pattern may or may not be sup-
ported by a significantly non-zero score.
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Informative
transversion

Tree and
observed
nucleotides
Supports
Influence on
parsimony >_<
Supports
Influence on
transversion
parsimony
Supports
Influence on
evolutionary
parsimony

Figure 20 Nucleotide substitution patterns and their
effects on different methods of phylogenetic tree infer-
ence. The first pattern, informative transversion, repre-
sents the effect of a single nucleotide substitution that
is in the internal (central) branch of the tree. It is an ex-
ample of the informative characters upon which parsi-
mony depends. Transversion parsimony and Lake’s
method of invariants rely entirely upon transversions
for informative events. The second pattern portrays a
possible outcome of two peripheral branch transver-
sions. Because the results are indistinguishable from the
first pattern (two A’s and two C’s), all methods will
mistake this as support for an incorrect phylogeny. The

6. Lake (1987a) suggested that statistical signifi-
cance be evaluated by a one degree of free-
dom y? test:

Z=X*/(X*+X")
x5 =Y It +¥7)
¥z =2/ +Z7)

Therefore the outcome of interest is two val-
ues of x? that do not differ significantly from
zero and one value that does. Holmquist et al.

transversions 1

Parallel
transversions 2

Parallel

A C C C C C

Supports No effect
Supports Supports
Supports Counters

T X

third pattern illustrates the possibility that independent
transversions in two peripheral branches will yield dif-
ferent nucleotides. The pattern is uninformative to tra-
ditional parsimony (two substitutions would be re-
quired regardless of the assumed branching order).
Transversion parsimony will consider this pattern to be
support for the incorrect tree since the outcome looks
like a central branch transversion (in an incorrect tree)
combined with a peripheral branch transition (which is
ignored). Lake’s method treats this third pattern as an
estimator of multiple substitutions in peripheral
branches and subtracts it from the support for the in-
correct tree. i

(1988a) correctly pointed out that the x? ap-
proximation is inadequate when counts are
low and recommended the use of the exact bi-
nomial test instead.

NEGATIVE VALUES The net support of a tree can
be negative and yet significant (e.g., ¥ is negative
and 2y is significantly large). Lake (1987a) sug-
gested that this result could be interpreted as
positive evidence for the corresponding branch-
ing pattern, if no other pattern has significant
support. However, significantly negative values
should be viewed with extreme caution, because
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Figure 21 The three unrooted branching patterns with four sequences.

such outcomes are most likely to be the result of
selective pressure or some other non-random
process.

TRANSITIONS AND TRANSVERSIONS The phyloge-
netic information provided by Lake’s method is
based entirely on transversion substitutions, so
positions with two purines and two pyrimidines
are required. If there are no transversions, there
will be no signal. On the other hand, transition
substitutions decrease the signal. In particular,
peripheral branch transitions convert informa-
tive (supportive) positions into countersupport,
suggesting that the method might be particularly
sensitive to the ratio of transitions to transver-
sions. If transitions are indeed substantially more
frequent than transversions, then it is difficult to
accumulate a sufficient number of transversions
to infer the branching pattern without having the
signal randomized by transitions (see W.-H. Li et
al., 1987b). As noted above, generalized parsimo-
ny (character-state weighting), transversion par-
simony, and transversion-based distance meth-
ods provide alternative methods of coping with
a high transition:transversion ratio. Under many
conditions, these methods are much more effi-
cient than Lake’s method at finding the correct
tree (Hillis et al., 1994b).

Interestingly, transversion parsimony (as de-
fined in this chapter, which differs from Lake’s
use of the term) applied to four sequences seeks
the tree, X, Y or Z, with the largest value of X+ +
X5, Y*+ Y-, and Z* + Z~. By examining the equa-
tions in (40), it can be seen that transversion par-
simony uses the same data but adds the terms that
look like a peripheral branch transition (and a

central branch transversion) rather than subtract-
ing them as does Lake’s method.

Performance

Despite its intuitive appeal, the drawback of
Lake’s method is inefficiency. Especially when
rates of change are high, simulation studies sug-
gest that it requires vastly more data to achieve
the same probability of inferring the correct phy-
logeny as other methods. For example, in four-
taxon simulations using the K2P model under
long-branch-attraction conditions, Hillis et al.
(1994b) found that Lake’s method required about
108 nucleotides before its probability of selecting
the correct tree exceeded 1/3 (= the probability of
a randomly chosen tree). Maximum likelihood
analysis, on the other hand, achieved 95% success
at only 5000 nucleotides under the same condi-
tions. Lake’s method can be consistent under con-
ditions in which maximum likelihood (as cur-
rently implemented) is inconsistent, so given
enough data, it remains a potentially useful
method. Unfortunately, “enough data” may be
vastly more than the amount available.

Rooting Revisited

Most of the methods discussed above do not spec-
ify the location of the root. If, as is generally the
case, a rooted tree is desired, the root must be lo-
cated using extrinsic information. As mentioned
above, the most commonly used method is to in-
clude one or more taxa that are assumed to lie
cladistically outside of a presumed monophyletic
group. We recommend including more than one
outgroup taxon as a means of testing the assump-
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tion of ingroup monophyly. If there is a single
branch on the unrooted tree that partitions the in-
group taxa from the outgroup taxa (e.g., Figure
22A), then the tree is consistent with the assump-
tion of ingroup monophyly. If, on the other hand,
there is no such branch (Figure 22B), then we have
rejected the monophyletic ingroup hypothesis (at
least in a non-statistical sense). Of course, this test
is one-sided: the existence of a branch that parti-
tions the assumed ingroup versus outgroup taxa
is no guarantee that the root does not lie some-
where within the ingroup. But at least the attempt
to reject the hypothesis of ingroup monophyly
failed, and one can feel somewhat more confident
about the assumption for that reason.

Rooting is frequently the most precarious step
in any phylogenetic analysis. In particular, con-
necting a distant outgroup to a tree can be very
problematical, as there may be so many changes
along the branch connecting-the ingroup to the
outgroup that the sequences have become effec-
tively randomized. In the worst case, this can lead
to spurious “long branch attraction” effects (see
the section on “Parsimony and Inconsistency”),
with artifactual rooting along longer ingroup
branches (Hendy and Penny, 1989; Miyamoto and
Boyle, 1989; W.C. Wheeler, 1990b; D.R. Maddison
et al., 1992). For this reason, it is often preferable
to be satisfied with an unrooted tree than to in-
clude a highly divergent outgroup taxon in the
analysis. An alternative strategy (Nixon and Car-
penter, 1993) is to perform an analysis of only the
ingroup taxa first, and connect an outgroup taxon
to the resulting unrooted tree secondarily (Lund-
berg, 1972). Although the location of the root may
still be suspicious, at least the distant outgroup
will not confound the estimation of the (unrooted)
relationships of the ingroup.

The choice of outgroup taxa can exert a strong
effect on the analysis, so the outgroup(s) must be
chosen carefully. It is especially important to
choose outgroups that minimize the impact of
long branches (i.e., it is much more important to
break up long sister-group lineages than to in-
crease the sampling density of more distant
clades). A.B. Smith (1992) provides an excellent
discussion of these and related issues.

(A) 11 I3 14 0-1
12 0-2
0-3
(B) I-1 o1 I4 I-3
i% 0-2
0-3

Figure 22 Use of multiple outgroup taxa to infer the
location of the root of a tree. (A) The branch indicated
in bold partitions the ingroup taxa from the outgroup
taxa, yielding an unambiguous root for the ingroup
portion of the tree. (B) No single branch partitions the
ingroup taxa from the outgroup taxa. The data do not
support the assumption of ingroup monophyly.

SEARCHING FOR OPTIMAL TREES

As emphasized above, methods that have explicit
optimality criteria (e.g., maximum parsimony, ad-
ditive-tree distance methods, and maximum like-
lihood) separate the problem of evaluating a par-
ticular tree under the selected criterion from that
of finding the optimal tree(s). Most of our presen-
tation to this point has dealt with the former prob-
lem; in this section, we address the latter. For data
sets of small to moderate size (8-20 taxa, depend-
ing on the criterion), exact methods that guaran-
tee the discovery of all optimal trees may be used.
For larger data sets, exact solutions require a pro-
hibitive amount of computing time; consequently,
approximate methods that do not guarantee opti-
mality must be used.

Exact Algorithms

Exhaustive Search

The conceptually simplest approach to the search
for optimal trees is to evaluate every possible tree.
Assuming that exact methods exist for evaluating
a particular tree, we need only a method for enu-
merating all possible (strictly bifurcating) trees in
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Figure 23 Enumeration of all 15 possible unrooted trees for five taxa (see text).

order to find a globally optimal solution. A sim-
ple algorithm, outlined in Figure 23, can be used
to perform this enumeration. Initially, we connect
the first three taxa in the data set to form the only
possible unrooted tree for these taxa (Figure 23,
row 1). In the next step, we add the fourth taxon
to each of the three branches of the three-taxon
tree, thereby generating all three possible un-
rooted trees for the first four taxa (Figure 23, row
2). We continue in a similar fashion: adding the ith
taxon to each branch of every tree (containing i — 1
taxa) generated during a previous step. Thus, for
example, row 3 of Figure 23 contains all 15 possi-

ble trees for the first five taxa, obtained by adding
the fifth taxon to each of the five possible
branches for the three trees obtained at the four-
taxon stage. This makes clear the rationale for ex-
pression (1) for counting the number of possible
unrooted bifurcating trees for T taxa: for each of
the possible trees for i — 1 taxa, there are 2(i—1) -3
= 2i — 5 branches to which the ith taxon can be
connected. Note that the order of addition is im-
material; we could have just as easily chosen taxa
at random for next addition at each step.
Evaluation of expression (1) for several possi-
ble values of T quickly reveals why exhaustive
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Figure 24 Search tree for branch-and-bound algorithm (see text).

search procedures are useful only for small num-
bers of taxa. There are 945 possible unrooted trees
for only 7 taxa, over 2 x 10° trees for 10 taxa, and
over 2 X 10?0 possible trees for 20 taxa (Felsenstein,
1978b; see Table 2 in Chapter 12). Thus, exhaustive
enumeration of all possible trees typically is feasi-
ble only for 11 or fewer taxa (34,459 425 trees).

Branch-and-Bound Methods
Fortunately, an exact algorithm for identifying all
optimal trees that does not require exhaustive

enumeration is available for any criterion whose
value is known to be non-decreasing as additional
taxa are connected to a tree. The branch-and-
bound method, frequently used to solve problems
in combinatorial optimization, was first applied to
evolutionary trees by Hendy and Penny (1982).

The branch-and-bound method closely resembles
the exhaustive search algorithm described above.

In this procedure, we traverse a search tree in a
depth-first sequence, as illustrated in Figure 24.

The root of the search tree (A) contains the only



possible tree for the first three taxa. We first con-
struct one of the three possible trees obtained by
connecting taxon 4 to tree A, yielding tree BI.
Then, to this tree, we connect taxon 5, yielding
tree C1.1. (If there were more than five terminal
taxa, we would continue to join additional taxa in
this manner until a tree containing all T taxa had
been completed.) Now, we backtrack one node on
the search tree (i.e., back to tree B1) and generate
the second tree resulting from the addition of
taxon 5 to tree Bl (= tree C1.2). When all five of
the trees derivable from tree B1 (C1.1-C1.5) have
been constructed, we backtrack all the way to tree
A of the search tree and take the second path
away from this node, leading to tree B2. As before,
all five trees derivable from tree B2 (C2.1-C2.5)
are constructed in turn. Then we backtrack once
again to tree A and proceed down the third path,
toward trees C3.1-C3.5. Eventually we will have
constructed all of the possible trees, culminating
with tree C3.5. If the score of each tree containing
all five taxa were evaluated at the time of its con-
struction, then the search would be an exhaustive
one equivalent to that described in the above sec-
tion. However, a branch-and-bound search differs
by eliminating parts of the search tree that only
contain suboptimal solutions. '

Let L represent an upper bound on the opti-
mal value of the chosen optimality criterion. (We
assume that we want to minimize this criterion,
just as we minimize the tree length under a parsi-
mony criterion or minimize the sum of squared
deviations in an additive-tree distance method.)
For the present, we can obtain L by evaluating a
random tree; if we know that a tree of score L ex-
ists, then the score of the optimal tree(s) cannot
exceed this value. As we are moving along a path
of the search tree toward its tips (containing all T
taxa), if we encounter a tree whose score exceeds
L, then there is no need to proceed further along
this path; connecting additional taxa cannot pos-
sibly decrease the score. Thus, we can dispense
with the evaluation of all (phylogenetic) trees that
descend from this node in the search tree and im-
mediately backtrack and proceed down a differ-
ent path. By cutting off portions of the search tree
in this manner, we can greatly reduce the number
of trees that must actually be evaluated.
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If we reach the end of a path on the search
tree and obtain a tree whose score is equal to the
upper bound L, then this tree is a candidate for
optimality. If this score is less than L, then this is
the best tree found so far, and we have improved
the upper bound on the score of the optimal
tree(s). This improvement is important, as it may
enable other search paths to be terminated more
quickly. When the entire search tree has been tra-
versed, all optimal trees will have been identified.

The branch-and-bound method is extremely
effective for many criteria, permitting exact solu-
tions for 20 or more taxa, depending on the effi-
ciency of the implementation, the speed of the
available computer, and the “messiness” of the
data. The method can be used to search for opti-
mal trees under parsimony, maximum likelihood,
and additive distance criteria in programs such as
PAUP* (see Appendix).

The above presentation of the branch-and-
bound method, although correct, is an oversim-
plification of the algorithms actually used in state-
of-the-art computer programs. Refinements in the
algorithm that greatly speed the computations
usually are implemented. These refinements, de-
signed to promote earlier cut-offs in the traversal
of the search tree, include: (1) using heuristic
methods (discussed below) to obtain a near-opti-
mal tree whose score is used as the initial upper
bound; (2) designing the search tree so that diver-
gent taxa are added early, thereby increasing the
length of the initial trees in the search path; and
(3) using pairwise incompatibility to improve the
lower bound on the length that will ultimately be
required by trees descending from a tree at a
given node of the search tree. These methods are
discussed in more detail in Hendy and Penny
(1982) and Swofford (1996).

An obvious question may have occurred to
the reader at this point. Since the branch-and-
bound method requires evaluation of all trees as
its worst possible case, why would we ever want
to perform an exhaustive search? In fact, if we
were interested only in the optimal trees, the
branch-and-bound algorithm would indeed be
the preferred means of finding them. However,
exhaustive searches permit the researcher to ex-
amine the frequency distribution of tree lengths.



482 Chapter 11 [ Swofford, Olsen, Waddell & Hillis

It is often useful to know, for example, whether
there are few or many near-optimal trees, or
where some tree of prior interest lies in the distri-
bution of tree lengths. In addition, with very noisy
data, the time spent evaluating bounds can ex-
ceed the time spent evaluating the extra trees.

Heuristic Approaches

When a data set is too large to permit the use of
exact methods, optimal trees must be sought via
heuristic approaches that sacrifice the guarantee
of optimality in favor of reduced computing time.
The task of searching for an optimal tree by ap-
proximate methods is somewhat analogous to the
plight of a myopic pilot who loses his glasses
when forced to parachute from his airplane into a
mountainous region. He suspects that there is a
manned outpost at the top of the highest peak in
the area, and he must somehow grope his way
there to have any hope of rescue. Simply walking
uphill from the point of his landing will not nec-
essarily lead to his goal, since he may not have
started on a slope of the highest peak. Suppose
that he reaches a summit and finds no outpost.
Two possibilities remain: (1) he is, in fact, at the
top of the highest peak, but was wrong about the
existence of the outpost; or (2) he has climbed the
wrong hill. Although rather absurd, the analogy
is quite appropriate.

Heuristic tree searches generally operate by
hill climbing methods. An initial tree is used to
start the process; we then seek to improve the tree
by rearranging it in a way that improves its score
under our chosen optimality criterion (e.g., mini-
mum length). When we can find no way to fur-
ther improve the tree, we stop. Like the downed
pilot, however, we generally have no way of
knowing whether we ended up at the top of the
highest hill—we do not know whether we have
arrived at a global or merely a local optimum.

The details of heuristic search procedures
vary considerably from one implementation to
the next. In addition, better methods are often in-
vented. Consequently, we prefer to leave the
specifics to the documentation of the computer
program used to perform the search, and will con-
centrate on more general concepts.

Stepwise Addition

The most commonly used method for obtaining a
starting point for further rearrangement is by
stepwise addition of taxa to a growing tree. First,
three taxa are chosen for the initial tree. Next, one
of the unplaced taxa is selected for next addition.
Each of the three trees that would result from join-
ing the unplaced taxon to the tree along one of its
(three) branches is evaluated, and the one whose
score is optimal is saved for the next round. In this
next round, yet another unplaced taxon is con-
nected to the tree, this time to one of the five pos-
sible branches on the tree saved from the previous
round. The process terminates when all taxa have
been joined to the tree.

Of course, the above description is oversim-
plified in that several decisions are required,
none of which has a straightforward answer.
Which three taxa should be used initially? How
do we decide which unplaced taxon to connect to
the tree next? One approach is to simply add the
taxa in the same order in which they are pre-
sented in the data matrix, starting with the first
three and sequentially adding the rest. This strat-
egy, for example, is the one used in Felsenstein’s
(1993) PHYLIP package. Another approach, op-
tionally available in Swofford’s PAUP*, is to
check all triplets of taxa and start with the one
that yields the shortest tree. At each successive
step, all remaining unplaced taxa are considered
for connection to every branch of the tree, and the
taxon-branch combination that requires the
smallest increase in tree length is chosen. Still an-
other approach, suggested by Farris (1970), is to
pre-specify an addition sequence based on each
taxon’s distance to a reference taxon (called a hy-
pothetical ancestor by Farris, but it could just as
well be any taxon in the data matrix). Unfortu-
nately, there seems to be no strategy that works
best for all data sets; the best approach is to try as
many alternatives as possible, each of which may
potentially provide a different starting point for
branch swapping (see below).

Algorithms like this are referred to as “greedy
algorithms” by computer scientists. Like the near-
sighted pilot who is unable to scan the horizon
and must simply proceed up the nearest hill, these
methods choose the solution that looks best given
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Figure 25 Heuristic tree selection using star decom-
position method. At each step, the optimality criterion
is evaluated for each possible joining of a pair of lin-

the current situation rather than attempting to see
more broadly into the future. Thus, one placement
of a taxon may be best given the taxa currently on
the tree, but that placement may become subopti-
mal upon the addition of subsequent taxa. Once a
decision has been made to connect a taxon to a
certain point, however, we must usually accept
the consequences of that decision for the remain-
der of the stepwise addition process, perhaps end-
ing up in a local optimum as a result.

Star Decomposition Methods

An alternative to stepwise addition is the star
decomposition method, a divisive pairwise clus-
tering method (see “Cluster Analysis,” below).
The algorithm can be used with any criterion
that can be evaluated on a non-binary (polyto-
mous) tree. To begin, we connect all of the ter-
minal taxa connected in a “star tree” containing

eages leading away from the central node. The best tree
found during each step becomes the starting point for
the next step.

a single internal node (Figure 25, step 1). Next,
we evaluate the optimality criterion for all pos-
sible trees that can be constructed by joining two
of the terminal nodes into a new group (Figure
25, step 2). The tree from this stage that scores
best according to the criterion is saved for the
next step. Each time we form a new group, we
reduce by one the number of branches con-
nected to the central node. The process contin-
ues until the step in which all generated trees
are binary (Figure 25, step 3), and we choose the
best of these (again according to the chosen op-
timality criterion). ¥

The most commonly used star decomposition
method is the neighbor-joining algorithm of
Saitou and Nei (1987; see below). Saitou (1990),
Adachi and Hasegawa (1992), and Z. Yang (1995)
have also implemented the method for both DNA
and protein maximum likelihood. Star decompo-
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Figure 26 Branch swapping by nearest-neighbor in-
terchanges (NNIs). Each interior branch of the tree de-
fines a local region of four subtrees connected by the in-
terior branch. Interchanging a subtree on one side of the
branch with one from the other constitutes an NNI.
Two such rearrangements are possible for each interior
branch.

sition, like stepwise addition, is a greedy algo-
rithm that is prone to entrapment in local optima.

Branch Swapping
Because of the excessive greediness and suscepti-
bility to local optima problems, stepwise addition
and star decomposition algorithms generally do
not find optimal trees unless the number of taxa
is small or the data are very clean. However, it
may be possible to improve the initial estimate by
performing sets of predefined rearrangements, a
technique commonly referred to as branch swap-
ping. In general, any one of these rearrangements
amounts to a “stab in the dark,” but the hope is
that if a better tree exists, one of the rearrange-
ments will find it. Examples of three kinds of re-
arrangements used in current branch-swapping
algorithms are shown in Figures 26 through 28.
Of course, the globally optimal tree(s) may be
several rearrangements away from the starting
tree. If a rearrangement is successful in finding a
better tree, a round of rearrangements is initiated
on this new tree. As long as each round of re-
arrangements is successful in finding an im-
proved tree (according to its score under the opti-

mality criterion), then we will eventually arrive at
the global optimum. However, if the intermediate
trees would require us to pass through trees that
are inferior to the one(s) already obtained, we will
once again find ourselves trapped in a local opti-
mum unless an option is provided for branch
swapping on suboptimal trees (e.g., the “KEEP”
option in PAUP*; Swofford, 1993, 1996). A related
problem concerns plateaus on the optimality sur-
face. It may be the case, for example, that an opti-
mal tree lies several rearrangements away from
the current tree, and that these rearrangements all
correspond to trees having equal scores under the
optimality criterion. If the intermediate trees are
discarded because they are “not better,” then the
optimal tree will not be found. A few programs do
not retain equally good trees because they have
no protection against cycling (alternation between
two trees, each of which can be rearranged to
yield the other); these programs will not be effec-
tive if plateaus are encountered, since they are un-
able to traverse the plateau.
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Figure 27 Branch swapping by subtree pruning and
regrafting. A subtree is pruned from the tree (e.g., the
subtree containing terminal nodes A and B as indi-
cated). The subtree is then regrafted to a different loca-
tion on the tree. All possible subtree removals and reat-
tachment points are evaluated.
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Figure 28 Branch swapping by tree bisection and re-
connection. The tree is bisected along a branch, yield-
ing two disjoint subtrees. The subtrees are then recon-
nected by joining a pair of branches, one from each
subtree. All possible bisections and pairwise reconnec-
tions are evaluated.

Testing for Convergence

Because of the limitations of heuristic approaches,
some way of evaluating the success of the chosen
method in obtaining a globally optimal solution is
needed. The obvious strategy in this regard is to
begin from different starting points and ask
whether the same result is always obtained. For ex-
ample, a set of random sequences for the addition
of taxa can be used to generate initial trees for in-
put to branch swapping. Since, for reasonably
noisy data at least, the starting trees will vary de-
pending on the addition sequence, convergence to
a common optimal tree (or set of trees) is encour-
aging. (A more extreme approach—using random
trees rather than random addition sequences—
could be adopted; however, the starting trees are,
on average, so far from the optimal trees that this
strategy seems to be less effective.) Even if re-
arrangements of different starting trees do not con-
verge to the same end point, the use of several
starting trees is a good idea; if multiple peaks on
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the optimality surface exist, we will be more likely
to find them.

Alternatives to Hill Climbing
Even when greedy algorithms like stepwise ad-
dition or star decomposition are followed by
branch swapping, entrapment in local optima can
still occur. Fundamentally, any search heuristic
consists of pseudorandomly perturbing (rear-
ranging) the current solution until either the re-
sulting solution is acceptable, or a stopping crite-
rion is satisfied. The criteria of acceptability are
what separate the heuristic search methods from
each other: the nature of the perturbations used
is problem-dependent.

We can think of the “goodness” of a solution
t; as some function z(t;), for each step i. Thus, in
hill climbing, t;,; is acceptable if z(t;,;) = z(#): our
myopic pilot will never go anywhere that takes
him downbhill, only uphill or across. In simulated
annealing (Van Laarhoven and Aarts, 1987) a new
solution is accepted if z(t;,;) = z(¢;), as in hill climb-
ing, but even if z(t;,1) < z(t;), then the procedure
will accept the new solution with a certain proba-
bility, as follows:

Prob[accepting solution z(t, +1)]

T if z(t,,) > z(t)
= e-k[z(ti+1)—2(fi)] otherwise

where k is a parameter that can vary over time.

In the Great Deluge method (Dueck, 1990;
Dueck and Scheuer, 1990), the probability of ac-
cepting a new solution #; is 1 if z(¢;,1) > w;,
where w; is a bound that increases slowly with
time, so that if {;,, is accepted, then w;,; = w; +
clz(t..1) - (¢)]. The constant c is usually about
0.01 to 0.05. These methods of determining the
acceptability of a new solution offer an efficient
means of improving the performance of heuris-
tic searches (M. Charleston, personal communi-
cation), and there are many other variants, in-
cluding the use of a “tabu list” (Glover, 1989)
that prevents the search from revisiting any so-
lutions it has just tried (the list usually contains
about 5 to 10 solutions).
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Algorithmic and Other Methods

The methods for tree searching described in the
above sections are appropriate when an optimal-
ity criterion that can be evaluated for any given
tree is chosen. The problem is then reduced to
finding an optimal tree given the chosen criterion.
The methods described below do not cleanly fit
into this framework, either because they are de-
fined solely on the basis of an algorithm or be-
cause the task of finding an optimal tree cannot be
cleanly separated from that of evaluating a spe-
cific tree.

Cluster Analysis

Cluster analysis is a family of related techniques
for representing similarity or distance data (we
will use distances) in the form of an ultrametric
tree (Sneath and Sokal, 1973). If the data them-
selves are ultrametric, then the representation on
the tree will be exact. It should be obvious that if
the distance data themselves are not ultrametric,
then they cannot be fit exactly to such a tree, and
therefore errors might be introduced.

The method of cluster analysis is conceptually
simple. The raw data are provided as a table of
distances between all pairs of taxa. Call d;; the dis-
tance between taxa i and j. The tree is constructed
by linking the least distant pairs of taxa, followed
by successively more distant taxa, or groups of
taxa. When two taxa are linked, they lose their in-
dividual identities and are subsequently referred
to as a single cluster. Initially, each taxon consti-
tutes its own cluster. At each stage in the process,
as two clusters are merged into one, the number
of clusters declines by one. The process is com-
plete when the last two clusters are merged into a
single cluster containing all of the original taxa.

The steps of the method are as follows:

1. Given a matrix of pairwise distances, find the
clusters (taxa) 7 and j such that d; is the mini-
mum value in the table.

2. Define the depth of the branching between i
and j (I,-j) to be d,-f-/2.

3. If i and j were the last two clusters, the tree is
complete. Otherwise, create a new cluster
called u.

4. Define the distance from u to each other cluster
(k, with k # i or j) to be an average of the dis-
tances dy; and dy;.

5. Go back to step 1 with one less cluster; clusters
i and j have been eliminated, and cluster u# has
been added.

The variants are primarily in the details of
step 4. The most commonly used clustering
method is UPGMA (unweighted pair group
method using arithmetic averages), in which the
averaging of the distances in step 4 is based on the
total number of taxa in the clusters. That is, if clus-
ter i contains T; taxa, and cluster j contains T; taxa,
then di':‘u = (T, dk,' =+ TI dkj)/(Tz + T]) If the Simple av-
erage [dy, = (dy; + dy) /2] is used instead, the tech-
nique is called WPGMA (weighted PGMA).
Other variants include using the maximum dis-
tance [d;,, = max(dy;dy), called complete linkage],
or the minimum distance [dy, = min(dy;dy;), called
single linkage]. These alternatives all give the
same results when the data are ultrametric, but
they can differ in their inferences when the data
are not ideal.

An example of using UPGMA to infer a tree
of five taxa (55 rRINA sequences) is given in Fig-
ure 29. The figure presents the upper right half of
the pairwise distance matrix at each stage of the
cluster analysis. Starting with the first table, the
smallest distance, the 0.1715 substitutions per se-
quence position separating Bsu and Bst, is indi-
cated in bold face. Thus, the first inferred branch-
ing unites these taxa at a depth of 0.1715/2 =
0.0858. These two taxa are merged into a cluster
in the next table, and their distances to all other
taxa are averaged. For example, the distance from
the Bsu-Bst group to Lvi is (0.2147 + 0.2991)/2 =
0.2569. The smallest distance in the second table
joins the Bsu-Bst cluster with Mlu at a depth of
0.1096 (= 0.2192/2). The distances of the Bsu-Bst-
Mlu cluster to the other taxa are then computed
by the unweighted method. For example, the dis-
tance to Lvi is (2 x 0.2569 + 0.3943)/3 = 0.3027.
Notice that this value is identical to (Bsu:Lvi +
Bst:Lvi + Mlu:Lvi)/3, where A:B is the distance
from taxon A to taxon B. Each taxon in the origi-
nal data table contributes equally to the averages,
which is why the method is called unweighted. The



Bsu Bst Lvi Amo Mlu
Bsu — 0.1715 0.2147 0.3091 0.2326
Bst — 0.2991 0.3399 0.2058
Lvi - 0.2795 0.3943
Amo .= 0.4289
Mlu —
Bsu-Bst Lvi Amo Mlu

Bsu-Bst — 0.2569 0.3245 0.2192
Lvi — 0.2795 0.3943
Amo — 0.4289
Mlu -

Bsu-Bst-Mlu Lvi Amo
Bsu-Bst-Mlu — 0.3027 0.3593
Lvi E 0.2795
Amo —_

Bsu-Bst-Mlu Lvi-Amo
Bsu-Bst-Mlu — 0.3310
Lvi-Amo —

Figure 29 Cluster analysis (UPGMA) of 55 rRNA evo-
lutionary distance estimates. Abbreviations correspond
to Figure 15. Each table represents the pairwise dis-
tances (estimated nucleotide substitutions per sequence
position) for one round of clustering (only the upper
right half of the symmetrical matrix is shown). The
minimum distance value in each table is in bold. The
corresponding pair of taxa (or clusters) are merged into
a single cluster in the next table. The bold distance
value is twice the depth of the branch point separating
the clusters merged. A diagram of the inferred tree is in
Figure 15B.

smallest distance in the third table unites Lvi and
Amo at a depth of 0.1398. The distance between
the Bsu-Bst-Mlu and Lvi-Amo clusters is then (3
% 0.3027 + 3 x 0.3593)/6 = 0.3310. Thus the im-
plied root of the tree joins these two clusters at a
depth of 0.1655. The complete tree is shown in
Figure 15B.

Note that cluster analysis cannot join two taxa
(sometimes called operational taxonomic units or
OTUs) unless at least one pairwise distance links
them. Thus, missing data within a group can force
one or more members out of the group in the in-
ferred tree, a problem discussed in greater detail
under “Similarity and Distance Data.”

Cluster analysis has historically been very
popular for several reasons. First, the principal as-
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sumption is that the data are approximately ultra-
metric. This assumption is of course a very strong
one, but it is seductive to believe that a single
stringent assumption can be satisfied more easily
than a long list of (what might be) less restrictive
assumptions. Second, the idea of grouping the
taxa that are least different, regardless of any finer
points of consideration, has a strong intuitive ap-
peal. The extreme of this view is the phenetic per-
spective in which it is asserted that nothing but the
extent of similarity matters biologically and that
consideration of the historical branching order is
of purely secondary interest. A third reason is the
availability of programs to do cluster analysis and
the relative speed of the calculations, thereby en-
abling large numbers of taxa to be analyzed.

As emphasized above, simple cluster analysis
has drawbacks. First, it is just an algorithm (or
family of algorithms) with no objective definition
of what constitutes an optimal tree when the data
are not ideal. In particular, because genes do not
diverge uniformly in all organisms or organelles
(Chapters 8, 9, and 12), systematic errors are likely
to be introduced into cluster analysis reconstruc-
tions. Finally, alternative, rapid methods are avail-
able that will work for all additive trees, not just
those that are ultrametric.

Algorithmic Methods for Additive Trees

A variety of algorithmic methods related to clus-
ter analysis have been proposed that will correctly
reconstruct additive trees, whether the data are ul-
trametric or not. These methods fall into three pri-
mary categories. Those in the first category trans-
form any additive distance matrix into an
ultrametric matrix and then use cluster analysis to
infer the tree. They include the transformed dis-
tances method of W.-H. Li (1981), the present-day
ancestor method of Klotz and Blanken (1981),
and, in a less obvious sense, the neighbor-joining
method of Saitou and Nei (1987). The second cat-
egory comprises methods that form the clusters
consistent with the largest fraction of taxon-quar-
tets, using a relaxed definition of additivity for a
four-taxon tree. These methods include those of
Sattath and Tversky (1977) and Fitch (1981). Meth-
ods of the third class, which includes the distance
Wagner method (Farris, 1972), build an additive
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representation of the tree by sequential addition
of taxa. The transformed distance approaches all
have a computational complexity that is propor-
tional to T3; therefore, any problem that is
tractable with standard cluster analysis can also
be solved with these methods. We present a ver-
sion of the neighbor-joining method below.

Unlike cluster analysis, additive-tree methods
yield unrooted trees, which are adequate for some
purposes. If a root is to be placed, however, it
must be based on an ancillary criterion. Usually,
one or more taxa that are assumed to lie outside a
monophyletic group of interest are included in the
analysis. The location at which these taxa join the
tree defines the root with respect to the ingroup.
Another method, midpoint rooting, depends on
an assumption of rate uniformity that is some-
what weaker than assuming a molecular clock
across the entire tree: if the two most divergent
lineages have evolved at the same rate, then the
appropriate root is at the midpoint of the path
connecting these taxa.

THE NEIGHBOR-JOINING METHOD Neighbor join-
ing (Saitou and Nei, 1987) is conceptually related
to traditional cluster analysis, but removes the
assumption that the data are ultrametric. In prac-
tical terms, it does not assume that all lineages
have diverged equal amounts. However, it does
assume that the data come close to fitting an
additive tree, so correction for superimposed
substitutions is important for data that might
include lineage-to-lineage differences in average
rate.

The neighbor-joining algorithm is a special
case of the star decomposition method described
earlier. In contrast to cluster analysis, neighbor
joining keeps track of nodes on a tree rather than
taxa or clusters of taxa. The raw data are provided
as a distance matrix, and the initial tree is a star
tree. A modified distance matrix is constructed in
which the separation between each pair of nodes
is adjusted on the basis of their average diver-
gence from all other nodes (conceptually, this ad-
justment has the effect of normalizing the diver-
gence of each taxon for its average clock rate). The
tree is constructed by linking the least-distant pair
of nodes as defined by this modified matrix.

When two nodes are linked, their common ances-
tral node is added to the tree and the terminal
nodes with their respective branches are removed
from the tree. This pruning process converts the
newly added common ancestor into a terminal
node on a tree of reduced size. At each stage in
the process, two terminal nodes are replaced by
one new node (corresponding to an internal node
on the final tree). The process is complete when
two nodes remain, separated by a single branch.

The steps of the method (modified from Studier
and Keppler, 1988) are as follows:

1. Given a matrix of pairwise distances (d), for
each terminal node i calculate its net diver-
gence (r;) from all other taxa using the for-
mula

N
ri = Edik (41)
k=1

where N is the number of terminal nodes in
the current matrix. Note the assumption that
d; = 0, otherwise the summation would need
to skip over k =1.

2. Create a rate-corrected distance matrix (M) in
which the elements are defined by

M; =d; —(r;+7,)/(N~-2) (42)

for all i and with j > i (the matrix is symmetri-
cal, and the case of i = j is not interesting).
Only the values i and j for which M;; is mini-
mum need be recorded; saving the entire ma-
trix is unnecessary.

3. Define a new node u whose three branches join
nodes i, j, and the rest of the tree. Define the
lengths of the tree branches from u to 7 and j:

Uiy =di]‘ /2"‘(7}' -—?‘]-)/[Z(N—Z)]

D= i

ju i Uiy

4. Define the distance from u to each other termi-
nal node (for all ki or j)
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Bsu Bst Lvi Amo Milu R R/3
Bsu — 0.1715 0.2147 0.3091 0.2326 0.9279 0.3093
Bst —0.4766 —_ 0.2991 0.3399 0.2058 1.0163 0.3388
Lvi -0.4905 -0.4356 - 0.2795 0.3943 1.1876 0.3959
Amo —0.4527 -0.4514 —0.5689 — 0.4289 1.3574 0.4525
Milu —0.4972 -0.5535 -0.4221 —0.4441 — 1.2616 0.4205
Lvi to node 1 distance = 0.2795/2 + (0.3959 — 0.4525) /2 = 0.1114
Amo to node 1 distance = 0.2795 - 0.1114 = 0.1681

Bsu Bst Milu Node 1 R R/2
Bsu — 0.1715 0.2326 0.1222 0.5263 0.2631
Bst -0.3701 - 0.2058 0.1798 0.5571 0.2785
Milu —{.3856 -0.4278 — 0.2719 0.7103 0.3551
Nodel -0.4278 -0.3856 -0.3701 - 0.5739 0.2869

Bsu to node 2 distance = 0.1222/2 + (0.2631 — 0.2869) /2 = 0.0492
node 1 to node 2 distance = 0.1222 — 0.0492 = 0.0730

Bst Milu Node 2 R R/1
Bst - 0.2058 0.1146 0.3204 0.3204
Milu -0.5116 — 0.1912 0.3970 0.3970
Node2 —0.5116 -0.5116 —_ 0.3058 0.3058

Bst to node 3 distance = 0.1146/2 + (0.3204 — 0.3058) /2 = 0.0646
node 2 to node 3 distance = 0.1146 — 0.0646 = 0.0500

Milu Node 3
Milu — 0.1412

Node 3 —
Mlu to node 3 distance = 0.1412

Figure 30 Neighbor joining of 55 rRNA evolutionary
distance estimates. The data and abbreviations are as in
Figure 29. Each table presents the pairwise distance val-
ues input to the round of analysis (upper right half of
the matrix). The rightmost two columns present the
row totals for the uncorrected distances (the row being
defined based on the full symmetrical matrix; see equa-
tion 41) and the total divided by the number of terminal
nodes minus two. The rate-corrected pairwise distances

= (e + g~ d) / 2 43)

5. Remove distances to nodes i and j from the data
matrix, and decrease N by 1.

6. If more than two nodes remain, go back to step
1. Otherwise, the tree is fully defined except
for the length of the branch joining the two re-
maining nodes (i and j). Let this remaining
branch be

Each step has generated one internal node

as defined by equation (42) are given in the lower left
half of the matrix. The minimum corrected distance
value in each table and the corresponding uncorrected
pairwise distance are shown in bold. The correspond-
ing pair of taxa (or clusters) are removed from the ma-
trix and replaced by their common ancestral node in
the next table and distances based on equation (43). The
inferred tree is diagrammed in Figure 15A.

and has estimated the lengths of two of the

branches connected to that node. The tree can

be drawn from these data.

An example of using neighbor joining to infer
a tree of five taxa is given in Figure 30. The data
are the same as in the cluster analysis example in
Figure 29. The pairwise distance estimates are in
the upper right triangle of each matrix (ignoring
the last two columns). The distance matrix row to-
tals [r from equation (41)] and r/(N-2) are given
in the last two columns. The rate-corrected dis-
tances are in the lower left triangle of the table.
For example, the corrected Bsu to Bst distance is
0.1715 - (0.3093 + 0.3388) = —0.4766. A general
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property of these corrected distances is that they
are negative; therefore, finding the minimum dis-
tance means finding the most negative value. In
the first table, the minimum value is the —0.5689
relating Amo and Lvi. Both this value and the cor-
- responding uncorrected distance, 0.2795, are in
boldface. Thus, Amo and Lvi are joined to one an-
other and to the rest of the taxa through a new
node, called node 1 in this example. The two lines
below the table illustrate the calculation of the
branch lengths from the two taxa to the node.
Amo and Lvi are then removed from the distance
table, and the distances from node 1 to the re-
maining taxa are calculated using equation (43).
For example, the Bsu to node 1 distance is (0.2147
+ 0.3091 — 0.2795) /2 = 0.1222. The second table,
which now relates only four terminal nodes, is
treated just as the first table. Looking at the cor-
rected distances, we find two pairs with the low-
est value, —0.4278. This is not a coincidence: if Bsu
and node 1 are sister nodes, then Bst and Mlu
must also be sister groups. (If this observation is
unclear, try drawing the unrooted tree of four
taxa.) The remaining arithmetic will yield identi-
cal trees regardless of which of these two pairs are
joined at this step. In this example, node 2 is
added to the tree, joining Bsu, node 1, and the rest
of the tree. The branch lengths from Bsu and node
1 to node 2 are calculated below the table. The
third table eliminates Bsu and node 1, and adds
node 2. In this table, which relates three periph-
eral nodes, all three rate-corrected distances are
identical. As in the previous step, this result is not
a coincidence: only one possible unrooted tree can
link three taxa. The choice of the pair to be joined
is arbitrary; the ultimate outcome will be the
same. Adding node 3 to the tree so that it links Bst
and node 2 to the rest of the tree (which is only
Mlu at this point) gives one more pair of branch
lengths and a “tree” containing node 3 and Mlu.
Their pairwise distance is used directly as the
length of the segment joining them. The tree is
completed. The results are shown in Figure 15A.
As the neighbor-joining algorithm seeks to
represent the data by an additive tree, it can as-
sign a negative length to a branch. Kuhner and
Felsenstein (1994) modified the algorithm so that
when a negative branch length occurred, it was
set to zero, and the difference was transferred to

the adjacent branch length so that the total dis-
tance between an adjacent pair of terminal nodes
was unaffected. This change does not alter the
topology of the tree found by the algorithm; it just
guarantees non-negativity of branch lengths (e.g.,
for interpreting branch lengths as estimated num-
bers of substitutions).

Neighbor joining is classified as an algorith-
mic method because it constructs only one tree
and does not explicitly optimize any objective
function (the branch-length estimates from neigh-
bor joining are not, in general, optimal for the
minimum evolution criterion). We believe that it
should be thought of as a means of getting a start-
ing tree for more thorough searches using branch
swapping under the minimum evolution or other
additive-tree criteria, not as a method for choos-
ing a final tree.

SPLIT DECOMPOSITION All of the methods
described above will select a tree regardless of
how non-treelike the data appear. When the data
do not conform to a treelike model, criterion-
based methods may provide some indication of a
problem, for example, by discovering some near-
ly optimal trees that are quite different in topolo-
gy- Algorithmic methods such as neighbor join-
ing provide little or no indication that the data
do not conform to the model. Split decomposi-
tion (Bandelt and Dress, 1992) is a method for
graphically representing trends in distance data.
The method detects well-supported groupings
when they occur, but also identifies conflicting
(incompatible) groups that may also have strong
support in the data. These conflicts can arise
from sources such as inadequate correction for
superimposed changes in the distance transfor-
mation, convergence driven by natural selection,
or reticulate evolution. We will not give a com-
plete description of this method, but will outline
the basic ideas using a simple example.

The method is based on the four-point metric
(formula 10) (Buneman, 1971), which states that if
taxa i, j, k, and I (a quartet) are related by a tree
((7, ), (k, I)) and the distances are tree-additive,
then the minimum sum will be djj + dy, while the
larger sums dy + dj and dj + dj will be equal. With
real data (i.e., imperfectly additive distances), the
relationship dj + dj; = dj + dj will not hold. Al-



(A) 1 2 3 4
1  — 032400 042960 034512
2 — 034512 0.15927
3 — 032400
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though we could hope that dij + dy < dy + dy and
dij+ dy < dy + djx , which forms the basis of the Sat-
tath-Tversky (1977) and Fitch (1981) “neighborli-
ness” methods, even this relationship will usually
be violated by some quartets. Split decomposition
adopts the working assumption that at the very
least, d; + dy; will not be the largest of the three
sums. Usually, phylogenetic methods assume that
if dy + dj exceeded both other sums, then there is
no support in the data for the tree ((3,1), (7.Kk)).
However, we can also ask whether there is rela-
tively unambiguous support for one of the other
two trees. For example, if d;; + dj; and dj + d,; are
nearly equal, but both are distinctly smaller than
di+ dy, conflicting support is evident. The closer
one of these two sums approaches d; + djx, the
more consistent is the support for the tree corre-
sponding to the other sum.

We illustrate this procedure using the hypo-
thetical example of Figure 31. The distances in
Figure 31A are the observed or uncorrected dis-
tances that would be expected from the example
used to illustrate the Hadamard conjugation (i.e.,
calculated using the relationship d = (1 —7)/2; see
equation 31). The three relevant distance sums
are:

dlz i d34 =(0.64800
d 13 + d24 = 0.58887

d 14 P d23 = 0.69024
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© 1 9 3 4
1  — 052206 0.98021 0.58598
2 —  0.58598 0.19176
3 — 052206
4 e

D) 1 3

2 4

Figure 31 (A) Distance matrix for split decomposition
example. (B) Graphical representation (network) of
splits implied by matrix (A). (C) Poisson-corrected dis-
tance matrix. (D) Correct tree inferred from matrix (C).

Thus, we reject the tree ((1,4),(2,3)) and calculate
an isolation index representing support for each of
the other partitions (splits) as

S1234 = [(dyg + do3) — (dyp + dsg)] / 2 =0.04224
S1324 = [(d1g + do3) — (dq3 + doy)] / 2 =0.10137

The observation that support for the ((1,2),(3,4))
split is nearly half that of the support for the
((1,3)2,4)) split suggests that there is conflicting
support for two different groupings in the data
set. This conflict is represented by drawing the
tree as a network showing the amount of support
for each of the two supported groupings (Figure
31B). A standard tree-building method such as
neighbor joining would, in contrast, select the
tree ((1,3),(2,4)) but give no indication of the sup-
port in the data set for the alternative tree
((1,2),(3,4)).

In this example, we can identify the cause of
the conflict as failure to account for superim-
posed changes, which in this case would cause
selection of an incorrect tree using neighbor join-
ing or other additive-tree methods. However, us-
ing the standard Poisson correction (equation 27),
we can obtain the corrected distance matrix
shown in Figure 31C. (Note that the elements of
this matrix are equal to one-half of the appropri-
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ate elements in the corrected generalized distance
vector p of equation 30.) For this corrected ma-
trix, we have

dlZ + d34 = 10441
d13 + d24 = 1.1720
d14 + d23 =1.1720

When split decomposition is performed using the
corrected distances, the box in Figure 31B indi-
cating conflicting support disappears because
[(d14 + d23) e (d13 4= d24)] / 2= O, and the correct
tree is inferred (Figure 31D).

For a tree of more than four taxa, the devia-
tion from the additive four-point metric condition
is measured for all possible subsets of four taxa.
Bandelt and Dress (1992) showed that only a cer-
tain number of the implied splits can be portrayed
on a planar graph (the split decomposable portion);
the proportion which cannot is referred to as the
split-prime residue. Bandelt and Dress (1992) sug-
gested that the majority of the random noise con-
tained in a data set is transferred to the split-
prime residue (which also contains some
systematic biases that are only locally uniform in
their direction). Remaining random noise and sys-
tematic error is retained in the split-decomposable
component and is observed on the resulting net-
work as incompatibilities between splits (or unre-
solved nodes; see below).

When using split decomposition on substan-
tial numbers of taxa, the resulting graph often ap-
pears more like an unresolved tree than a network
with many boxes. Distant outgroups, for example,
can show large random fluctuations and also dif-
ferent systematic biases, tending to hide the infor-
mation on ingroup systematic bias (as all three
quartet relations may be optimal depending on
which taxa are used). When this happens, local-
ized (but possibly strong) systematic error is lost
in the split-prime residue and the graph loses both
“boxiness” and resolution. One solution to this
problem is to look for systematic errors by restrict-
ing the analysis to smaller subsets of taxa (4-10).

Because it is based on distances and not char-
acters, split decomposition by itself does not al-

low one to detect when conflicting splits are due
to events such as horizontal transfer of DNA or
recombination. Such claims should be evaluated
with more sensitive character- and sequence-
based methods (e.g., Stephens, 1985; Hein, 1990a,
1993). A more straightforward use of the method
is in the choice of a distance transformation (e.g.,
allowing more substitution parameters, unequal
rates across sites, and /or unequal base composi-
tions). Split composition can give some idea of
whether these transformations are improving the
“treelikeness” of the graph or making it worse (vi-
sualized as a more “boxy” network; e.g., see Lock-
hart et al., 1995b).

Split decomposition analysis will not neces-
sarily detect some kinds of departures from pre-
dictions of a model, again because we are start-
ing from distances rather than characters. For
example, unlike the Hadamard conjugation,
split decomposition will not recognize an excess
of patterns supporting all three four-taxon trees,
as would happen if there were more superim-
posed changes than the model predicts. Like the
Hadamard conjugation, we need a means of de-
termining whether a conflicting “signal” is re-
ally present or is simply due to sampling error
causing inequality of dz + dj; = d; + dj; by chance.
Unfortunately, this question has received little
attention, but with small data sets it is possible
to determine analytically how many standard
deviations separate the three sums of distances.
A bootstrap approach (see below) to assessing
the reliability of features in the split decomposi-
tion graph is also feasible, but will probably be
conservative. The relationship between split de-
composition and the distance Hadamard is not
well understood; both methods should be con-
sidered useful because they give different in-
sights.

METHODS BASED ON A RELAXED FOUR-POINT METRIC
The methods of Sattath and Tversky (1977) and
Fitch (1981) are also based on a relaxation of the
four-point metric condition of Buneman (1971).
However, they are based on a somewhat stricter
criterion than split decomposition. These methods
operate by creating a similarity matrix s;; that
counts the number of times each pair of taxa i and



j satisfy the conditions dij + dyg < dig + dyy and di; +
dy < dy + di over all pairs (k, I). This matrix forms
the basis for a cluster analysis. We begin by choos-
ing the pair (7, j) for which s;; is maximal, and form
the corresponding cluster. These two taxa are
merged into a single object and distances are re-
calculated as in UPGMA. The quartet-based scor-
ing of pairs of taxa is then repeated, and the cycle
continues until all taxa have been clustered. (The
Sattath-Tversky and Fitch methods differ slightly
in the details of how averaging is performed in
preparation for the next clustering cycle.)

The Sattath and Tversky (1977) and Fitch
(1981) methods have not been widely used. Fur-
thermore, simulations by Charleston (1994) indi-
cate that these methods (and other transformed
distance methods, such as that of W.-H. Li, 1981)
are less effective in identifying the correct tree
than methods such as neighbor joining or closest
tree (applied to the distance Hadamard). They are
also more computationally intensive (requiring
time proportional to T°, as opposed to T3 for
neighbor joining).

DISTANCE WAGNER AND RELATED METHODS The
conceptual perspective of Fitch-Margoliash
methods and neighbor joining is that the esti-
mated pairwise distances are to be fit to an
additive tree, with some of the estimates (obser-
vations) being greater than the true values and
some of them being smaller than the true val-
ues. An alternative view is one in which the
sequence (or other) differences are not corrected
for superimposed changes and thus provide
lower bounds for the actual evolutionary dis-
tance. In this framework, the length of the path
connecting any pair of taxa must equal or
exceed the corresponding observed distance. In
analogy to character-based parsimony, the
desired tree is the one that minimizes the total
of all branch lengths in the tree, while using the
pairwise distances as lower bounds on the path-
length distances. Beyer et al. (1974) and
Waterman et al. (1977) have described exact
methods for accomplishing the desired mini-
mization on a given tree. Farris’s (1972) dis-
tance Wagner algorithm can be thought of as a
heuristic approach to the same problem.
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Modifications to the distance Wagner procedure
have subsequently been proposed by Swofford
(1981) and Tateno et al. (1982). As with neighbor
joining, if the experimentally determined dis-
tances are additive, then the optimal solution
will always be found. However, when the fit is
not exact, the behavior is not intuitively obvi-
ous.

RELIABILITY OF INFERRED TREES

Systematic Versus Random Error

In any statistical analysis, two kinds of error (sys-
tematic and random) need to be distinguished.
We define random error as deviation between a
parameter of a population and an estimate of that
parameter, due strictly to a limited sample size
used to make the estimate. By definition, random
error disappears in infinite samples. In contrast,
systematic error is deviation between a parame-
ter of a population and an estimate of that para-
meter, due to incorrect assumptions in the esti-
mation method. Systematic error persists (and
may intensify) as sample sizes increase and be-
come infinite.

Throughout this chapter, we have discussed
various conditions under which systematic error
arises in phylogenetic analyses. In general, sys-
tematic error occurs when the evolutionary
process violates the assumptions of a phyloge-
netic method in a critical way. Under these condi-
tions, a bias may be introduced into the evalua-
tion of alternative phylogenies, favoring some
branching patterns and decreasing the support for
others. If the bias becomes sufficiently great, it
may overcome the legitimate support for the cor-
rect tree and lead the researcher to an incorrect
conclusion. Because the effect is systematic, the
addition of more data will tend to solidify the in-
correct conclusion (and the method is said to be
inconsistent or positively misleading under these
conditions; Felsenstein, 1978a). For a mistake to
occur in phylogenetic estimation of the branching
order as a result of systematic error, the magni-
tude of the bias must exceed the valid support for
the correct tree. Furthermore, the bias must be in
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the direction of an erroneous tree, as it is possible
for systematic bias to increase apparent support
for the historically correct tree. Thus, the presence
of a bias does not necessarily lead to wrong an-
swers, but it does cast doubt upon the validity of
the inference process.

Even if evolution occurred exactly as as-
sumed by a particular analytical method, an in-
correct tree may be inferred with finite data due
to chance events (which introduce random error).
For example, convergent substitutions might be
expected to occur (in a given situation) only once
per 100 nucleotide sites, but because of sampling
error we might observe three convergent substi-
tutions in a single sample of 100 nucleotide sites.
This type of error occurs even when the presumed
model is correct. By analogy, the observation of 20
consecutive “heads” in a coin-tossing experiment
might lead us to conclude that the coin is two-
headed, but of course this outcome has a finite
probability of occurring (approximately 10-) even
if the coin is fair. In inferential statistics, we gen-
erally choose a certain probability (typically 0.05)
below which an outcome is improbable enough
(assuming that random error accounts for the de-
viation) to warrant rejection of a null hypothesis.

Random error does not necessarily produce a
random effect on the outcome of an analysis,
however. For instance, for many methods of cal-
culating pairwise distances, small distances and
large distances are affected differently by sam-
pling error. Under some conditions, this leads to
a sample-size-dependent bias in methods that are
nonetheless consistent for the model under con-
sideration (see Hillis et al., 1994b for an example).
In other words, even if a method is consistent
and will lead to the correct tree if given an infi-
nite amount of data, it nonetheless may be biased
with finite data, even if its assumptions are met
perfectly.

Realistically, both random and systematic er-
ror are expected in any given study. Random er-
ror occurs in any finite data set (since the expected
proportions of different character patterns are real
numbers), so the sensitivity of the results to the
presence of random error needs to be assessed.
Because systematic error is expected when the as-
sumptions of a method are violated, the assump-

tions should be tested, the effects of potential
sources of bias should be explored, and methods
should be used to reduce the effects of systematic
error in the analysis.

Systematic Error

Conditions That Lead to Systematic Error
Fortunately, the situations likely to lead to sys-
tematic error under most of the methods we have
described are relatively well understood. We have
discussed some of these conditions in the sections
describing each of the methods; here we present a
brief review for the major classes of analysis.

GENERAL ASSUMPTIONS Almost all methods
assume that the characters analyzed are vertical-
ly inherited (rather than horizontally acquired).
This assumption is usually met for molecular
data, and so probably only rarely introduces sys-
tematic error into molecular systematic studies.
The other general assumption of most methods
is that characters are independent with respect to
probability of change. If, for example, a change
in one nucleotide position makes a change in a
second position more likely, then this assump-
tion is violated (see Wheeler and Honeycutt,
1988, and Korber et al., 1993 for examples). If
methods do not explicitly account for this non-
independence, it may lead to systematic error.

PARSIMONY If the number of actual sequence
changes per sequence position in a macromole-
cule is always small (zero or one), then parsimony
will correctly reconstruct the phylogeny given
enough data (Felsenstein, 1978a). As the number
of changes increases, the proportion of those
changes that are homoplastic (parallel, conver-
gent, or reversed) increases. If the tree is relatively
dense (i.e., branch lengths are short enough so
that the expected number of changes on any one
branch is small), these homoplastic changes usu-
ally will be detected as such. However, parsimony
analyses do not detect multiple changes on long
unbranched lineages, thereby creating the poten-
tial for bias if a mixture of long and short branch-
es are present in an analysis (Felsenstein, 1978a).



ADDITIVE-TREE TECHNIQUES The additive-tree
techniques discussed in this chapter are free of
systematic error if the distance data are additive
(satisfy the four-point condition) and no distance
values between sister taxa are missing from the
data matrix. This internal consistency of the tech-
nique places the burden of accuracy on the esti-
mation and transformation of the distance data
as opposed to the actual tree inference proce-
dure. Specifically, the model used to correct for
superimposed changes must reflect the underly-
ing evolutionary processes. To the extent that it
does not, additive-tree methods are susceptible
to systematic error.

MAXIMUM LIKELIHOOD If the model of evolution
used to evaluate the likelihood of given trees
does not reflect the actual evolutionary process-
es, then maximum likelihood analyses will be
subject to systematic error. In general, maximum
likelihood appears to be more robust to viola-
tions of its assumptions than are additive-tree
methods (Huelsenbeck, 1995b). In principle,
maximum likelihood models can be made arbi-
trarily complex to account for particular evolu-
tionary processes, but the cost in terms of com-
putaﬁonal time may be severe. Moreover, com-
plex models may be more sensitive to random
error than are simple models (because more
parameters need to be estimated from the same
amount of data).

CLUSTER ANALYSIS If the assumption of ultra-
metricity is satisfied and no distance values
between sister taxa are missing from the data
matrix, cluster analysis will be free of systematic
error. However, if two lineages are not equally
distant from a third, more diverged lineage (ie.,
if the pairwise distances are not ultrametric),
then systematic error will be introduced. As
pointed out above, satisfaction of the three-point
condition establishes that the distances are ultra-
metric. In practice, this condition is rarely satis-
fied by real data.

Recognizing Systematic Error
There is no foolproof method for identifying arti-
facts in phylogenetic trees that result from sys-
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tematic error. There are, however, a few tech-
niques that can help in evaluating the extent of
systematic error, and for assessing the expected
effects of identified systematic error.

tEsTS OF MODEL FIT Often there are tradeoffs
between model complexity (which provides con-
sistency under a wide range of conditions) and
both computational complexity and sensitivity to
random error. Therefore, in using a method that
assumes an explicit model of evolution, it is
important to choose a model that is complex
enough to explain the observed data, but not so
complex as to be subject to impractically long
computations or require impractically large data
sets. Choosing a model, therefore, requires a test
to compare the fit of one model of evolution
against another for a particular data set. Fur-
thermore, we need to know if the best model
provides an adequate explanation of the
observed data. Reeves (1992) and Goldman
(1993a,b) have described tests for this purpose.

To compare two models of evolution, Gold-
man (1993a) suggested using the likelihood ratio
test statistic, &

§=2(nL,—InLy

where In L, is the log likelihood under the more
complex (parameter—rich) model and In Ly is the
log likelihood under the simpler model. This sta-
tistic will always take on a value greater than or
equal to zero because the likelihood under the
complex model will always be equal to or higher
than the likelihood under the simple model. To
test whether the more complex model provides a
significantly better explanation of the observed
data, Goldman (1993a) suggested that the null dis-
tribution of the statistic & be determined using
simulation. The tree and the parameters of the
model are estimated under the null hypothesis
that the simpler model of evolution is correct, and
this estimated tree and parameterized model are
then used to simulate many replicate data sets of
the same size as the original. Maximum likelihood
scores are then calculated under both the simple
and complex models to produce a null distribution
for the test statistic 8. If & (from the original data) is
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greater than 95% of scores from the simulated
data, then the simpler model of evolution is re-
jected. Note, however, that rejection of the null hy-
pothesis only indicates that the simpler model is
inadequate to explain the observations; it does not
necessarily indicate that the more complex model
is adequate. The more complex model is now the
null model and is subject to further testing.

Typically, one can conduct tests to see if a
given parameter that can be added to a model
provides a significant improvement in the opti-
mality score. For instance, many models assume
a difference in the probabilities of transitions and
transversions. To test if this parameter (transi-
tion: transversion ratio) is necessary, one could
test the Kimura two-parameter model against
the Jukes—Cantor one-parameter model of DNA
substitution (see the section on “Maximum Like-
lihood”). In this example, the log likelihood un-
der the Kimura model would be In L; and the log
likelihood under the Jukes—Cantor model would
be In L.

To test the adequacy of a given model of evo-
lution, Goldman (1993a) suggested that the log
likelihood under the multinomial distribution
(In L,) be tested against the model of interest
(In Lp). This test is very stringent, however, and
under a wide variety of circumstances the model
of interest will be rejected as an “adequate” ex-
planation of the observed data. This does not
mean that the model is inadequate to provide a
reasonable estimate of phylogeny, but it does
mean that the model fails to provide a perfect de-
scription of the underlying evolutionary pro-
cesses. Since we never expect models of evolution
to be correct in every detail, the test is perhaps
best used to estimate how far the assumed model
deviates from the underlying processes. The
greater the deviation, the more attention one
should pay to discovering those aspects of the
evolutionary process that have not been ade-
quately incorporated into the model.

In applying the likelihood ratio test, the num-
ber of tests being conducted needs to be consid-
ered. For example, in comparing the likelihoods
of ultrametric trees (i.e., assuming a “constant
clock”) to trees in which a given lineage is al-
lowed to change at a different rate, it is tempting

to perform the test on the most deviant lineages
(those with the greatest and /or least total length
in a rooted additive tree). Alternatively, some au-
thors have simply varied the assumed rate for
each branch or subtree, one after the other. In ei-
ther case, the approach amounts to multiple hy-
pothesis testing, and lowers the significance be-
low that of a single likelihood-ratio test with the
same value of 6.

Another approach for testing model fit has
been proposed by Rzhetsky and Nei (1995). They
derive linear invariants that are independent of
evolutionary time and phylogeny and reflect the
constraints on a restricted model relative to more
general time-reversible models. By testing
whether the deviations of these invariants from
their expected values are greater than would be
expected by chance if a particular model were
true, a test of whether that model is applicable to
a particular data set is obtained. Goldman’s
(1993a) method has some theoretical advantages,
but Rzhetsky and Nei’s (1995) method is much
more computationally feasible.

ASSESSING THE EFFECT OF A POTENTIAL BIAS In
some cases, a model of evolution may be ade-
quate for the majority of taxa, but not applicable
to all taxa. For instance, if a model incorrectly
assumes that the same equilibrium base frequen-
cies exist in all lineages, then systematic error
will be introduced into the analysis. The problem
may be particularly severe if the differences in
base composition do not follow phylogenetic
lines. If base composition is affected by ecologi-
cal or physiological factors, then the potential for
convergence in base composition exists. For
instance, Pettigrew (1994) argued that the meta-
bolic constraints of flying bias the base composi-
tion of microchiropterans (the mostly small,
echolocating bats) and the megachiropterans
(flying foxes and their relatives) toward a higher
AT content, and that this bias misleads phyloge-
netic analyses of many different mitochondrial
and nuclear genes (an effect he called the “flying
DNA hypothesis”). He argued that the numer-
ous studies that support the monophyly of these
two bat groups (e.g., Bennet et al., 1988; Adkins
and Honeycutt, 1991; Mindell et al., 1991; Am-



merman and Hillis, 1992; Bailey et al., 1992;
Stanhope et al., 1992) can all be explained by this
base compositional bias. Instead of bat mono-
phyly, Pettigrew (1986, 1991a,b, 1994) has argued
(primarily on the basis of neuroanatomy) that
megachiropterans are more closely related to pri-
mates than to microchiropterans. Therefore, two
different explanations have been presented for
the apparent support from DNA sequences for
bat monophyly: either the two “bat” groups are
phylogenetically related, or the results are
accounted for by systematic bias. Van Den
Bussche et al. (1996) have tested Pettigrew’s fly-
ing DNA hypothesis for the relevant data sets
through simulation, and have shown that the
support for bat monophyly cannot be explained
on the basis of base composition bias alone. Even
if Pettigrew’s phylogenetic hypothesis is correct,
and every substitution in the two bat lineages
went to an A or a T, then the bias would still not
be sufficient to explain the observed support for
bat monophyly. Furthermore, analyses that are
better at taking different base composition
among lineages into account (such as LogDet
analyses) still support bat monophyly. Therefore,
the analyses show that the particular bias is not a
sufficient explanation for the data. This does not
mean that the data have no systematic bias, but
it does mean that the hypothesized bias is not an
explanation for the results in this case.

In other cases, base composition does have a
demonstrable effect on phylogenetic analyses (see
Rzhetsky and Nei, 1995, for a test to detect signif-
icant base compositional differences). For in-
stance, Leipe et al. (1993) and Hasegawa and
Hashimoto (1993) have suggested that early eu-
karyote evolution is especially difficult to analyze
because of unequal base composition (e.g., the Gi-
ardia genome is about 70% G+C, whereas the av-
erage microsporidian genome is 35% G+C). Ob-
served distances, transformed distances, standard
parsimony, and current maximum likelihood
models all support Giardia as the sister lineage to
other eukaryotes with high bootstrap support
[based on Gouy and Li's (1989) small-subunit
'RNA data set]. However, phylogenetic analysis
of LogDet distances shows equal support for ei-
ther Giardia or microsporidians as the sister group
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to the remaining eukaryotes. Furthermore, if in-
variant sites are taken into account, then the sup-
port shifts strongly in favor of microsporidians as
the most basal eukaryotic lineage (Waddell, 1995).

Similar tests can be conducted to examine the
potential effects of any hypothesized systematic
bias. For example, both Gouy and Li (1989a) and
Olsen and Woese (1989) have argued that if the
tree of life proposed by Lake (1988)—in which Ar-
chaea is paraphyletic or polyphyletic—were cor-
rect, a systematic bias due to “attraction” of long
branches would not be sufficient to yield the trees
observed by the former groups (in which Archaea
is monophyletic). Gouy and Li (1989a) and Olsen
and Woese (1989) interpreted these results as
grounds to reject the proposal of Lake as being in-
consistent with their observations, a conclusion
that is contested by Lake (1990Db).

SENSITIVITY TO SPECIFIC TAXA IN THE TREE If the
data and tree inference technique were ideal,
analyzing any two subsets of taxa would yield
congruent trees (i.e., the trees would be identical
after pruning taxa absent from one or both trees).
In practice this is not the case. (Otherwise, find-
ing optimal trees would be almost trivial, since
constructing a tree by sequential addition of taxa
would always lead directly to the globally opti-
mal tree, regardless of the order of addition.)
Both systematic and random error can distort the
tree so that the inferred branching order is
dependent on the taxa included. Because the
total error contains both systematic and random
components, variation with the sampling of taxa
does not necessarily indicate an effect of system-
atic error, but it is suggestive. Most sources of
systematic error are expected to increase with
branch length; therefore, if the changes in tree
topology are specific to the most diverged taxa,
then there is again reason to suspect that system-
atic error is having a significant effect on the
analysis.

Lanyon (1985) described a jackknife method
that evaluates taxon stability by computing T
trees, each time leaving out one taxon. By com-
puting a strict consensus of these trees using a
method that allows different subsets of taxa to be
contained on each of the rival trees, the investiga-
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tor can determine which relationships are consis-
tent. Felsenstein (1988a) suggested that this
method may not have the properties of a statisti-
cally valid jackknifing procedure, but it nonethe-
less provides a useful index of which groups are
most stable to taxon selection.

CONTRIBUTION OF INDIVIDUAL TAXA TO THE OPTI-
MALITY CRITERION If the placement of a particu-
lar taxon is problematic (due to systematic error),
removal of that taxon from the analysis will fre-
quently make a disproportionate change in a
measure of tree quality, such as the least-squares
criterion in a distance tree, the estimated homo-
plasy of a tree derived by parsimony, or the
overall likelihood ratio statistic 6. However, such
measures are correlated with the number of taxa
in an analysis, so one must confirm that the
change in a given statistic is significantly greater
than would be predicted by the removal of an
average taxon (in many cases this will require a
simulation study).

INFERENCES BASED ON DIFFERENT MOLECULES
Phylogenetic relationships inferred from two or
more different molecules should, in theory, be
congruent if the molecules had the same overall
history. If the inferred relationships are different,
the reasons for the differences should be investi-
gated (Bull et al., 1993b). It is important to avoid
confusing differences between the optimal trees
with the conclusion that the results are signifi-
cantly incongruent: the former might simply be
due to random errors in one or both trees,
whereas the latter asserts the existence of a sig-
nificant conflict. One method for deciding
between these two possibilities is to fit each data
set to the tree(s) derived from the other data
set(s). Most modern programs allow the input of
user-defined trees for evaluation under a partic-
ular optimality criterion. For example, suppose
tree 1 is optimal for data set A and tree 2 is opti-
mal for data set B. If tree 2 is nearly as good as
tree 1 for data set A, and if tree 1 is nearly as
good as tree 2 for data set B, then there is no real
conflict, just inadequate information. This result
can sometimes occur even though the two trees
differ substantially in their topologies!

If a conflict cannot be explained by random
error associated with finite sampling, then one of
the following possible explanations should be
considered: the inadvertent use of non-ortholo-
gous genes (e.g., a tree with mouse and rabbit o
globin and rat -globin; paralogy); reticulation of
lineages due to hybridization or lateral gene
transfer (xenology); or the presence of significant
levels of systematic error (leading to inconsistent
conditions) in one or both trees.

NONPARAMETRIC APPROACHES Nonparametric
tests may provide an additional source of guid-
ance in evaluating a tree inferred from distance
data (or for which pairwise distance estimates
can be generated from the character data). In
practice, the usefulness of these tests is depen-
dent on the details of the tree inferred, and in
many circumstances the tests may not be able to
distinguish alternatives. An illustration of a case
in which they might be useful is provided by the
trees in Figure 32. A comparison of the paths
from A and B to D yields the expectation that dap
> dgp for all three trees. Let us assume that this
trend is significantly supported by the data (for
example, the trend is verified by bootstrap sam-
plings of sequence positions). If we now consider
the relationships of C to A and B, we expect that
dac > dpc in trees 1 and 3 (an expectation that
could also be true of a minor variant of tree 2),
whereas dpc > dac is only consistent with tree 2.
Again, we can examine the data directly to see if
one of these inequalities is significantly support-
ed. In particular, if we observe that dgc > dac,
then we must conclude that trees 1 and 3 are
incorrect, leaving tree 2 by elimination. Yet, if
tree 2 were historically correct, systematic error
could have biased the tree inference procedure to
group the long branches leading to C and D,
leading to the incorrect choice of tree 1. The rea-
son that it is possible to infer tree 2 from the data
and yet to find certain distances significantly
inconsistent with that tree lies in the particular
ratios of branches and in the fact that the latter
test does not need to examine the most underes-
timated distance (i.e., that separating C and D).
In contrast, the tree inference procedures dis-
cussed would include the distance from C to D
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Figure 32 Three alternative trees relating four taxa
that can be distinguished by a non-parametric test on
the distance data. See text.

(directly or indirectly) and potentially be misled
by this value.

Reducing Systematic Error

Several strategies are available to minimize sys-
tematic error and its effects on a phylogenetic
analysis.

CHANGING THE ASSUMPTIONS One obvious way
to reduce the chance of having systematic error
lead to inconsistency is to change the assump-
tions of the analysis to better match the observed
data (e.g., see “Tests of Model Fit,” above). One
example has already been given: if base composi-
tion is thought to vary significantly among taxa,
then pairwise distances can be corrected using
the LogDet transformation. However, the source
of the systematic error may not always be so
obvious, or a method may not have been devised
for dealing with an identified bias. The following
techniques may be useful in these cases.

REMOVING LONG BRANCHES A practical consid-
eration in the inference of trees from pairwise
distance data is that the effects of systematic
error are expected to be worse with larger than
with smaller distances. As noted in the discus-
sion of the Fitch-Margoliash technique, pairwise
distance methods include all measurements in
the calculations as though they were indepen-
dent. Therefore, having many long distances in a
tree will tend to compound errors. In order to
work around this problem, the use of outgroup
sequences should be kept to a minimum when
using a pairwise distance method. However, the
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substitution of different outgroup taxa, one or
two at a time, can still be used to evaluate the
reliability in the position of the root.

Ironically, the effect of multiple outgroups in
parsimony is almost exactly the opposite. The use
of multiple species of an outgroup taxon will tend
to divide the longest branch in the tree, thereby
decreasing its tendency to attract other long
branches (Felsenstein, 1978a; Hendy and Penny,
1989; A.B. Smith, 1994). To be most effective, how-
ever, additional outgroups should be chosen so as
to divide long branches reasonably evenly;
adding an extremely close relative of a very dis-
tant outgroup will gain little. Of course, the bene-
fits of adding additional taxa are not limited to the
outgroup. Long branches (sparse regions) within
the ingroup can also contribute to systematic er-
ror, and multiple substitutions are more easily de-
tected in dense regions. A somewhat paradoxical
phenomenon results. With large numbers of taxa,
correctly inferring every aspect of the true topol-
ogy is extremely difficult, but if we were inter-
ested in the relationships of only, say, four taxa,
we would be much better off to compute a tree for
20 taxa (interspersed among the four of interest)
and prune 16 of them from the tree than to com-
pute the tree for only the four taxa.

ELIMINATING UNRELIABLE DATA Another practi-
cal consideration concerns the fact that a branch
is long because a large number of substitutions
have occurred in the sequences being compared.
Limiting an analysis to those sequence regions in
which positional homology is most certain tends
to exclude the most variable positions in
sequences, thereby shortening branches and
decreasing the sensitivity of the analysis to mul-
tiple substitutions. This concept can be pushed



500  Chapter 11 [ Swofford, Olsén, Waddell & Hillis

further: if hypervariable regions can be identi-
fied in a set of sequences, then they might be
eliminated from the analysis, even if their posi-
tional homology is not in doubt. This phenome-
non provides one motivation for character
weighting.

Subjective elimination of data is sometimes
criticized as being too arbitrary (e.g., Gatesy et al.,
1993). Although we share the concerns of these
authors, we take the position that data are ex-
cluded from the moment one chooses a particular
gene, set of genes, or gene region to use in a sys-
tematic study. Most researchers would agree that
certain genes are evolving at an inappropriate rate
for the level of a study, and would avoid those
genes in an attempt to minimize saturation effects
and other problems (see, e.g., Simon et al., 1994).
It seems unreasonable to argue that just because
sequence data have been obtained (perhaps even
accidentally) for a region that is evolving too
rapidly to be reliable in a study, we are forced to
retain them at all costs. It is unrealistic to think
that subjectivity in a molecular systematic study
can be entirely avoided—for example, one could
almost always sequence additional taxa relevant
to a question, and it is a subjective decision when
to stop. We believe that the benefits of excluding
clearly unreliable regions—however subjectively
determined—outweigh the dangers.

The above paragraph notwithstanding, we
look forward to the development of methods that
allow a more objective assessment of which posi-
tions in a sequence are worth retaining. One
promising approach is the elision method of W.C.
Wheeler et al. (1995), which attempts to identify
stable versus unstable alignment regions by ask-
ing which positions align consistently over a wide
range of alignment parameters.

CHARACTER WEIGHTING Obviously, all charac-
ters are not equally informative with respect to
the evolutionary history of the taxa under study.
Some characters are both informative and reli-
able; they are telling us the truth about their
past. Other characters may be reliable but unin-
formative: although they are not actively mis-
leading us, they are not telling us anything very
useful either. The reason that phylogenetic
analysis is so difficult lies in a third category of

characters: those that are misinformative. These
observations lead us to the rationale for charac-
ter weighting. If we could somehow deduce
which characters were in fact the unreliable ones,
the task of reconstructing evolutionary trees
would be greatly simplified, because we could
minimize their influence in the analysis by giv-
ing them less weight.

Identification of unreliable characters is also
an effective way to avoid systematic error. By as-
signing lower weight to the characters that either
violate the assumptions of a method or are known
to predispose the method to inconsistency, we can
minimize the likelihood that systematic error will
occur. For instance, parsimony methods are much
more likely to be consistent if character change is
low, and consequently work best if the events be-
ing minimized (i.e., homoplastic changes) are in
fact the rare events. If the rapidly evolving char-
acters are recognized as such and given little
weight in the analysis, the problem of attraction
of long branches due to chance convergences will
be minimized. Unfortunately, beyond the use of
alignment difficulty as a criterion for macromole-
cular sequences, methods for assessment of char-
acter reliability have received little attention.

One extreme form of weighting is the elimi-
nation of characters, as discussed above. By as-
signing one set of characters the maximum
weight (unity) and another set of characters the
minimum weight (zero), we essentially assert that
there are two classes of characters, one compris-
ing characters that, at least on an a priori basis, are
all equally reliable, the other containing characters
that are worthless for the analysis in question. If
we believed that characters actually behaved in
this way, we would use a method of analysis
known as character compatibility (Felsenstein,
1981b), which searches for the largest “clique”—a
set of mutually compatible characters that can all
fit on the same evolutionary tree without homo-
plasy (e.g., Le Quesne, 1982; Estabrook, 1983).
Compatibility methods are no longer in wide-
spread use, probably because of their implicit ad-
herence to an unrealistic model that asserts that
once a character has been excluded from the
largest clique, it no longer conveys any useful in-
formation whatsoever.

An approach that uses compatibility as an ob-



jective weighting criterion (rather than to infer
phylogeny directly) was developed by Penny and
Hendy (1985, 1986). Sharkey (1989), apparently
unaware of the work of Penny and Hendy, de-
scribed a related approach, but limited to binary
characters. The strategy of these workers is to
count the observed number of incompatibilities
(O; between each character (j) and each other
character. (For methods to test the pairwise com-
patibility of unordered multistate characters, see
Estabrook and Landrum, 1975; Fitch, 1975, 1977;
Sneath et al., 1975.) To convert this number to a
weight, Penny and Hendy recommended com-
puting the number of incompatibilities expected
by chance (E)) if the distribution of states for each
character were independent of that for other char-
acters (i.e., free of any non-independence imposed
by their evolution on a common phylogeny).
Penny and Hendy (1985) tested several weighting
functions, but seem to have settled on the simple
relationship

w; =max[1-(0; /E;),0]

Thus, a character that is compatible with all other
characters is assigned the maximum weight
(unity), whereas a character that is incompatible
with as many characters as would be expected by
chance alone is assigned zero weight. More im-
portantly, characters that fall between these two
extremes are assigned intermediate weights.
(Note that if the observed number of incompati-
bilities actually exceeded the expected number, a
negative weight would be assigned unless the
weights are constrained to be non-negative.) This
method of weighting thus uses hierarchical struc-
ture in the data to assign weights, but does not
base weights on any specific tree. Unfortunately,
these methods remain relatively untested.
Another approach to character weighting is to
estimate optimal weights by successive approxi-
mation (Farris, 1969). An initial set of weights
(perhaps uniform weights) is used to obtain an
initial estimate of the tree. From some measure of
the fit of the characters to this tree, a new set of
weights is derived, which are then used to esti-
mate a second tree. The iterative rederivation of
weights and recomputation of trees continues un-
til the solution stabilizes (i.e., the tree derived
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from a new set of weights is identical to the tree
that was used to derive those weights). Farris
(1969) used reweighting functions based on the
consistency index (Kluge and Farris, 1969), de-
fined as r;/I; where r;is the range of character j
(defined as the minimum number of steps that the
character would require on any possible tree) and
l; is the length required by the character on the
tree at hand. Thus, characters that change the
minimum possible number of times have perfect
consistency (1.0), whereas characters that change
more often have lower consistencies (approaching
zero in the limit). Farris also noted that more ex-
treme forms of weighting might be more effective
than the use of the consistency index in successive
weighting procedures.

One danger inherent in any successive ap-
proximations (a posteriori) approach is the likeli-
hood of the search becoming trapped in a local op-
timum that depends on the starting tree (see also
Neff, 1986). It is easy to see that a character that is
inconsistent with the initial tree and down-
weighted as a result will have less influence in the
second iteration than it did in the first. But there
are some trees on which the character would have
been perfectly consistent, and would therefore
have been given maximum weight. Farris (1969)
tested the effectiveness of his successive approxi-
mations method by adding random noise to a data
set containing otherwise perfectly compatible
characters and testing whether the noisy charac-
ters were in fact the ones assigned little weight in
successive iterations (they were). We suggest that
one not become overconfident upon seeing this
kind of result, however, as characters in real data
sets do not fall cleanly into “completely reliable”
versus “random noise” categories. Nonethe-
less, recent model-based simulation studies and
studies of well-supported phylogenies (J. Mc-
Guire and J. Huelsenbeck, personal communica-
tion) indicate that successive approximation ap-
proaches can be effective, although not as they are
usually implemented. McGuire and Huelsenbeck
observed little or no improvement in accuracy
over the initial parsimony estimate when succes-
sive weighting was performed using a character’s
average consistency index across all of the most-
parsimonious trees as the reweighting criterion.
However, they found that successive weighting
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did increase the accuracy of the estimated phy-
logeny when used with more extreme forms of
weighting (such as the inverse of the total number
of character-state changes raised to the tenth
power) and when the best observed index value
for a character across all of the most-parsimonious
trees is used (as suggested by Campbell and Frost,
1993).

Another problem with successive weighting
approaches similar to Farris’s (1969) method is
that there is no objective criterion for comparing
any two trees (D.R. Maddison, 1990). That is, if a
tree is found to be optimal by the successive ap-
proximations algorithm, one cannot say how
much worse (if at all) an alternative tree is.
Goloboff (1993) has developed a method for
weighting characters based on their implied ho-
moplasy that avoids this limitation by defining a
weighting function and optimality criterion that
can be evaluated for any tree and compared
across trees. The idea is promising, although the
method needs to be more thoroughly evaluated.

Simon et al. (1994) have written an excellent
review of character-weighting strategies that is
both more data-oriented and more comprehen-
sive than the discussion here; readers are urged to
consult their paper for additional insights into is-
sues concerning weighting in distance and char-
acter-based contexts.

CHARACTER-STATE WEIGHTING In character
weighting, entire characters (e.g., nucleotide posi-
tions in a gene) are weighted differentially. In
contrast, character-state weighting provides dif-
ferent weights for different character-state trans-
formations within a character (see the section on
“Generalized Parsimony”). Differential character-
state weighting provides a mechanism for
increasing both the consistency and the efficiency
of parsimony analyses when the relative proba-
bilities of character-state transformations differ,
especially at high rates of evolution (Huelsenbeck
and Hillis, 1993; Hillis et al., 1994a,b). The
method works by giving greater weight to rare
changes, which are less likely to be homoplastic
(especially at overall high rates of character
change) and hence more likely to be reflective of
phylogenetic history (Williams and Fitch, 1989).

Character-state weights can be implemented
by use of the step matrices described in the sec-
tion on “Generalized Parsimony.” Several meth-
ods have been proposed for determining appro-
priate weights. If we knew the actual probabilities
for each type of transformation (e.g., for DNA se-
quence data, A > C, A > G, A - T, etc.), then an
appropriate transformation would be

Cimj=-InP;_;

where C;_,; is the cost of a state change from state i
to state j and P;_,; is the relative probability that
state { will change to state j across a given branch
or tree (Felsenstein, 1981c; W.C. Wheeler, 1990a).
If the entire probability matrix of state changes is
converted in this way into a step-matrix of change
costs (including the diagonals, which represent
the probability that a state will not change), then
the most-parsimonious reconstructions of ances-
tral states represent maximum Bayesian probabil-
ity estimates for these states (D.R. Maddison,
1990; Maddison and Maddison, 1992).

How can the relative probability matrix of
state changes be estimated? If we can assume a
constancy of processes across characters, then it is
possible to estimate the probability matrix from
the observed data. For instance, with DN A se-
quences, we might assume that the relative prob-
abilities of substitutions are affected in the same
way across sites by exposure to the same muta-
gens and repair mechanisms. Given this assump-
tion, one way to estimate relative probabilities of
change is to base the calculation on the ratio of ex-
pected to observed changes in all pairwise com-
parisons of the sequences, taking the relative base
frequencies of each base into account (Thomas
and Beckenbach, 1989; Knight and Mindell, 1993).
However, the various pairwise comparisons are
not evolutionarily independent, so the calcula-
tions will be biased by the underlying phylogeny.
One way to account for this non-independence is
to reconstruct all most-parsimonious ancestral
states in an initial estimate of the tree, and then
use this information to produce a change-and-sta-
sis matrix (Maddison and Maddison, 1992). Of
course, the reconstruction requires an initial tree,
which (if estimated by parsimony) requires an ini-



tial matrix of change costs, so the estimate may be
biased by the initial assumptions. In practice, the
relative frequencies of the various changes usu-
ally are not biased greatly by the initial tree, and
subsequent rounds of tree estimation can also in-
volve reweighting of the character-state changes
until a stable solution is reached (a procedure
called dynamic weighting by Williams and Fitch,
1989). Alternatively, matrices of change costs can
be estimated for several alternative hypotheses to
examine directly the extent to which the starting
tree biases the estimates of change costs.

One problem with the above approach is that
the most-parsimonious reconstructions are not the
only changes possible. Ideally, the relative proba-
bility matrix should be based on summed proba-
bilities across all possible character-state histories.
This can be accomplished using maximum likeli-
hood (e.g., Z. Yang, 1994a; Z. Yang et al., 1994).
But if the relative probability matrix is estimated
using likelihood methods, then what is the ad-
vantage of using weighted parsimony methods
over an explicit likelihood estimation procedure
to estimate the tree? One of the principal advan-
tages is one of computation time: complex maxi-
mum likelihood models typically constrain an in-
vestigator’s ability to search tree space
thoroughly, so only a very small portion of the po-
tential solution space can be explored. Weighted
parsimony procedures often provide a close ap-
proximation to the likelihood solutions, and the
calculations are much faster. Thus, one strategy is
to estimate the relative probability of change ma-
trix using likelihood, and then use weighted par-
simony to explore the solution space as thor-
oughly as computational limits permit. Once
optimal or near-optimal solutions have been
found (under the weighted parsimony criterion),
they can be used as input trees and evaluated un-
der the likelihood model. Given a fixed and finite
amount of computation time, this procedure often
finds better solutions under the likelihood crite-
rion than does a direct search of tree space under
the likelihood criterion, at least for moderately
large data sets.

Step matrices used for character-state weight-
ing can be either symmetric (e.g., the cost of a
change from A to G will equal the cost of a change
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from G to A) or asymmetric (in which case the
reciprocal costs will differ, with Dollo parsimony
being the most extreme form). Under most cir-
cumstances, the reciprocal costs should be sym-
metric, so that any part of the tree can be rooted
(by inclusion of an outgroup, for instance) with-
out changing the length of the tree. If asymmetri-
cal step matrices are used, then the various root-
ings of a tree will differ in tree length, so rooted
trees must be examined to determine the tree
length of the potential solutions. Since small
asymmetries in the estimated matrix are expected
from random error associated with finite sample
sizes, one would not want to root the tree on the
basis of this random error alone. However, if the
asymmetries of change among states are strong
and obvious (as with some RNA viruses;
Moriyama et al., 1991), then the use of an asym-
metrical step matrix may be justified (e.g., see
Hillis et al., 1994a).

The assumption of constant substitutional
processes operating across sites can be violated
for any number of reasons, including dependence
on the state of neighboring bases (Randall et al.,
1987; Schaaper and Dunn, 1987), codon usage in
protein-coding genes (W.-H. Li et al., 1985b),
strand bias (Wu and Maeda, 1987; Thomas and
Beckenbach, 1989), mutation bias (Loeb and Pre-
ston, 1986), secondary structural constraints
(Gerbi, 1985; Dixon and Hillis, 1993; Tillier and
Collins, 1995), and other non-phylogenetic
sources of covariation among sites (Fitch and
Markowitz, 1970; Korber et al., 1993). Therefore,
in some situations, it may be necessary to divide
the data set (e.g., into first, second, and third po-
sitions of codons) for the purpose of computing
separate step matrices to provide differential
weighting of state changes among the various
sites in the sequence.

Random Error

The only way to avoid random error is to obtain
an infinite amount of data; this practice will guar-
antee the correct result as long as the method is
consistent. This option is unrealistic, however, 50
it is important to maximize the extraction of phy-
logenetic information by using the most efficient
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methods that are applicable to the available data.
In any case, methods must be used to estimate the
sensitivity of the results to finite sampling. Penny
and Hendy (1986), Felsenstein (1988a), Li and
Gouy (1991), Hillis et al. (1993a), and Li and
Zharkikh (1995) have presented reviews of the
many methods available. Here we present and
discuss a few of the more common methods.

Testing for Hierarchical Structure

Even if a data set were constructed by randomly
assigning character states to taxa, some random
covariation would be expected due to the sto-
chastic nature of the sampling process. This ran-
dom covariation would lead phylogenetic recon-
struction methods to prefer some trees over others
even though true hierarchical structure in the data
was absent. Thus, it is worthwhile to ask whether
a data set contains more hierarchical structure
than would be expected purely by chance.

One way to assess the non-randomness of hi-
erarchical structure is through permutation tests,
which provide a means for approximating the dis-
tribution of a test statistic under a given null hy-
pothesis by permuting (randomizing) the ob-
served data. In a phylogenetic context, permuted
data sets are created by randomizing character
states among taxa, while holding the total num-
ber of occurrences of any state constant. Thus, any
correlation among character states that results
from actual phylogenetic structure is destroyed.
By comparing the null distribution of a test statis-
tic generated from a series of permuted data sets
with the observed value of the statistic from the
original data, one can determine whether the null
hypothesis of no phylogenetic structure can be re-
jected. If the test statistic does not lie in the ex-
treme (say 5%) tail(s) of the null distribution, then
there is a reasonably good chance that it could
have arisen by chance in the absence of meaning-
ful hierarchical structure, and further analysis of
the data would seem ill-advised. It is important to
remember, however, that although significant hi-
erarchical structure may be due to phylogenetic
signal, other sources of structure (such as base
compositional bias, or convergence) may also lead
to rejection of the null hypothesis. Statistics that
have been used in permutation tests include tree

length and measures of character consistency or
homoplasy (Archie, 1989a,b; Faith, 1990, 1991;
Faith and Cranston, 1991).

An alternative approach to permutation is the
examination of shape of the distribution of tree
lengths for either all possible trees or a random
sample of them (Hillis, 1991; Hillis and Huelsen-
beck, 1992). Fitch (1979, 1984) observed that data
sets with little or no hierarchical structure tended
to produce relatively symmetric tree-length fre-
quency distributions. Hillis and Huelsenbeck
(1992) showed that as the amount of hierarchical
structure was increased, these distributions be-
came more left-skewed. The degree of skewness
can be quantified using the standard g, statistic.
For n trees of length T, g, is calculated as

n
> (G-T)
= =1
&1 HS3
where s is the standard deviation of the tree
lengths (Sokal and Rohlf, 1981). Strong skewness
can be misleading, however, as very localized
structure can lead to highly asymmetric tree-
length frequency distributions. (For example, a
purely random data set can produce a highly
skewed tree-length distribution if one taxon is du-
plicated, as trees consistent with the monophyly
of the duplicated pair will be much shorter than
the remaining trees.) Hillis (1991) suggested a
procedure for detecting those groupings most re-
sponsible for the observed structure by calculat-
ing the g; statistic after successive restrictions of
the sample space of trees. He used random char-
acter states (rather than permuted states from the
observed matrix) to estimate the null distribution.
The latter approximation is computationally
much faster than permutation (in fact, it need
only be calculated once for a given number of taxa
and characters), but it is sensitive to deviations in
the frequencies of the observed character states.

Tests for Comparing Two Trees

Many tests have been described to compare two
hypothesized trees: Is tree A significantly better
(under a given optimality criterion) than tree B, or
are the differences within the expectations of ran-



dom error? Such tests have been devised for each
of the major optimality criteria.

PARSIMONY The first analytical tests for parsi-
mony were devised by Cavender (1978, 1981),
who studied the case of a four-taxon tree.
Felsenstein (1985b) extended these results to
include an assumption of a constant molecular
clock, and Steel et al. (1993b) extended Felsen-
stein’s test to take into account unequal
nucleotide frequencies among the taxa. Li and
Zharkikh (1995) noted that these tests could, in
principle, be extended to more than four taxa,
but that the tests are expected to have very low
power. Therefore, we concentrate here on related
heuristic tests that can be used with any number
of taxa.

Templeton (1983b) devised a nonparametric
test for comparing two trees. The test utilizes a
Wilcoxan ranked sums test of the relative number
of steps required by each character on each of the
respective trees. If the characters are uniformly
weighted and require no more than one addi-
tional change on either of the trees, then the test
can be simplified into the “winning sites” test of
Prager and Wilson (1988). This simple test com-
pares the number of characters that favor each of
the two trees and tests the results against a bino-
mial distribution. Under the assumption that ran-
dom noise will be equally likely to favor either of
the two trees, the test asks whether the support
for one hypothesis is significantly better than
would be expected from random variation among
the characters. Although the assumption is usu-
ally not met exactly (because the size of the rele-
vant subgroups in the two trees is expected to dif-
fer), the effect of the violation is likely to be small
and the test gives an easy approximation of the
probability that the observed difference is due to
random error.

Kishino and Hasegawa (1989) devised a para-
metric test for comparing two trees, under the as-
sumption that all nucleotide sites are indepen-
dently and identically distributed. This test uses
the difference in lengths of the two trees (D) as a
test statistic, where D = YD) and Dy; is the dif-
ference in the minimum number of nucleotide
substitutions on the two trees at the ith informa-
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tive site. The expectation for D (under the null hy-
pothesis that the two trees are not significantly
different) is zero, and the sample variance of D is

2
n n
2 A z 12
Tl 1{Dﬁ)ﬁ?{k 1D(k)}
i= =

where n is the number of informative sites. The
null hypothesis that D = 0 can be tested with a
paired t-test with n — 1 degrees of freedom, where

D/n
SD/‘\/;

If there is no a priori reason to suspect that tree 1
is better than tree 2, the test should be two-tailed.
If there is an a priori reason to suspect that one tree
is better than the other (for instance, if one tree is
the optimal tree found in a search, and it is being
compared against nearby suboptimal trees), then
the expectation for D is no longer zero. For this
reason, the test is strictly valid only when the two
trees being compared are selected on an a priori
basis.

=

DISTANCE TESTS Rzhetsky and Nei (1992a,
1993) proposed a test for comparing two trees
under the minimum evolution criterion. In this
test, D is the difference in the sum of the branch
lengths for the two trees as estimated by the
least-squares method, and the variance of D is
either estimated by bootstrapping (Nei, 1991) or
computed analytically (Rzhetsky and Nei,
1992a). Rzhetsky and Nei suggested a search
strategy for solutions under the minimum evo-
lution criterion by comparing the neighbor-join-
ing approximation to all trees that differ from
the neighbor-joining tree by up to four symmet-
ric-difference distance units (dgsp), and accepting
all trees that are not significantly worse than the
neighbor-joining tree. They restricted the com-
parisons to trees within 4 dgp because studies
based on six taxa showed that it is unlikely for
the optimal solution to be any more distant
from the neighbor-joining tree under these con-
ditions, at least if the number of characters
examined is large. However, this search strate-
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gy is likely to miss many solutions that are
equal to or better than the neighbor-joining tree
if there are greater numbers of taxa. For
instance, one of us (DLS) has found more than
27,000 trees that are equal to or better than the
neighbor-joining tree (under the minimum evo-
lution criterion) for the distance matrix exam-
ined by S.B. Hedges et al. (1992b; based on the
data of Vigilant et al., 1991). All but 345 of these
equal or better solutions are more than 4 dgp
from the neighbor-joining tree, and better solu-
tions are as much as 30 dsp from the neighbor-
joining tree. Therefore, a neighbor-joining esti-
mate (with a search of nearby trees) is a poor
substitute for a thorough search of tree space
for near-optimal solutions. If the number of
taxa is very small (the conditions under which
this search strategy is likely to be successful), an
exact search (exhaustive or branch-and-bound)
is computationally simple and will always find
the optimal solutions.

An alternative approach to testing the differ-
ence between two trees is to use a measure called
the generalized least-squares sum of squares,
which is similar to a weighted least-squares mea-
sure but takes covariances between distances (e.g.,
shared branches in the tree) into account. This sta-
tistic can be compared against a x* distribution
(see Bulmer, 1991 for examples).

LIKELIHOOD If one tree is a subset of a second,
more fully resolved tree, then the two hypothe-
ses can be compared with a standard likelihood
ratio test, using twice the difference of the log
likelihoods of the two trees as a test statistic (8).
This statistic is compared against the ¥ distribu-
tion, with the degrees of freedom equal to the
difference in the number of parameters of the
two hypotheses (in this case, the number of addi-
tional branches in the more fully resolved tree).
Unfortunately, we would usually like to compare
two trees that are not subsets of one another. In a
strict sense, the likelihood ratio test is invalid
under these conditions, because the number of
parameters in the two hypotheses is equal, so we
have zero degrees of freedom. Felsenstein
(1988a) has suggested that in cases where two
tree topologies differ by a single branch

rearrangement, we could test one topology
against the other by pretending that there was
one degree of freedom and using the likelihood
ratio test.

Other approaches have been used to estimate
the significance of a difference in log likelihoods.
One is the application of the Kishino and
Hasegawa (1989) test (discussed above, under the
parsimony criterion). An alternative is to generate
the expected distribution of 6 (rather than assum-
ing a y? distribution) through simulation of the
null hypothesis (i.e., the tree with the lower likeli-
hood). The likelihood analysis already provides
the expected branch lengths given the topology of
the null hypothesis, under an explicit model of
character evolution. Thus, this parameterized tree
can be simulated under the assumed model of
evolution, and the simulated data sets can be ana-
lyzed under the maximum likelihood criterion.
The expected distribution of differences in log
likelihood scores (or twice the differences, if the
standard test statistic is maintained) between the
optimal tree and null tree can then be generated
under the assumption that the null hypothesis is
true. If the difference in the test statistic for the
trees being compared exceeds 95% of the simu-
lated differences, then the two trees are signifi-
cantly different at p < 0.05, and the null hypothe-
sis can be rejected. An example of this approach
(which could be used with any optimality crite-
rion) is presented in Chapter 12. The primary lim-
jtation to its implementation is the computation
time involved, which can be considerable when
the data sets are large and the optimality criterion
is maximum likelihood.

Assessing the Reliability of Individual Branches
In many situations, it is desirable to assess the re-
liability of the individual internal branches of an
estimated tree. Many methods have been sug-
gested for this purpose. For instance, several
methods have been proposed for testing whether
a particular internal branch length is significantly
greater than zero in an additive-distance tree (see
Li and Gouy, 1991). Here we describe two non-
parametric approaches that have been widely
used for testing the degree of support for particu-
lar branches.



DECAY/SUPPORT INDICES AND T-PTP TESTS In par-
simony, a useful index of support for a mono-
phyletic group may be obtained by calculating
the difference in tree lengths between the short-
est trees that contain versus lack that group (K.
Bremer, 1988). This statistic has been referred to
as the decay index (Donoghue et al., 1992) or the
support index (K. Bremer, 1994). A difficulty with
this index is that it is not clear how large a value
must be for the group to be considered well sup-
ported. Faith (1991) extended permutation
approaches to test for the monophyly of a given
group of taxa. His a priori T-PTP (topology-
dependent permutation tail probability) test uses
as a test statistic the difference in the lengths of
the shortest trees in which a particular group is
non-monophyletic and monophyletic, respec-
tively. This statistic is equivalent to the sup-
port/decay indices described above, suggesting
that it might provide a useful means of assessing
their significance. The null distribution of the
test statistic is determined by evaluating the cor-
responding length differences of trees calculated
from permuted data sets. Faith’s a posteriori T-
PTP test uses the same test statistic as the a priori
T-PTP test but uses a different method for gener-
ating the null distribution. After permutation of
the data matrix, one calculates the length differ-
ence for all groups of the same size as the group
of interest and picks the greatest length differ-
ence between the shortest tree in which the
group of interest is non-monophyletic and the
shortest tree in which the group is monophyletic.
Unfortunately, these tests are sensitive to struc-
ture in the data set that is unrelated to the specif-
ic hypothesis of monophyly being evaluated
(Thorne et al., 1996). Simulations of Faith’s topol-
ogy-dependent cladistic permutation tail proba-
bility (T-PTP) tests (Huelsenbeck et al., 1995;
Thorne et al., 1996) demonstrate that it does not
accurately test for monophyly of the specified
group, so the question of how to assess the sig-
nificance of a support/decay index remains
unanswered.

NONPARAMETRIC RESAMPLING METHODS The
bootstrap and the jackknife (Efron, 1982; Efron
and Gong, 1983; Efron and Tibshirani, 1993) can
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be used to estimate the variance associated with
a statistic for which the underlying sampling dis-
tribution is either unknown or difficult to derive
analytically. These methods are called resampling
techniques because they operate by estimating the
variance of the sampling distribution by repeat-
edly resampling data from the original data set.
Under certain reasonable assumptions (Efron,
1982), the variance of the statistic of interest can
be approximated from the distribution of the
sample estimate over replications of the resam-
pling process. These resampling methods were
first used in a phylogenetic context by Mueller
and Ayala (1982), Felsenstein (1985a), and Penny
and Hendy (1985).

The bootstrap and the jackknife differ in the
way in which resampling is performed. In the
bootstrap, data points are sampled randomly,
with replacement, from the original data set until
a new data set containing the original number of
observations is obtained. Thus, some data points
will not be included at all in a given bootstrap
replication; others will be included once, and still
others twice or more. For each replication, the sta-
tistic of interest is computed. The jackknife, on the
other hand, resamples the original data set by
dropping k data points at a time and recomputing
the estimate from the remaining n — k observa-
tions (see R.G. Miller, 1974). We describe boot-
strapping here because it is much more com-
monly used in phylogenetic applications, but
much of the discussion applies to jackknifing as
well.

Figure 33 illustrates the bootstrapping proce-
dure in a phylogenetic context. History (the true
phylogeny) has given us one actual distribution
of characters among taxa for any given data set of
interest. The ideal way to examine the effects of
random error would be to replay the evolutionary
tape many times; this would allow us to examine
sampling variance in our data directly (see Figure
33A). However, this is not possible due to the sin-
gularity of evolutionary history. Instead, boot-
strapping allows us to generate a series of pseu-
dosamples (by resampling the unique data set
with replacement; Figure 33B), which we can use
in place of the actual samples to estimate sam-
pling variance. Typically, the pseudosamples are
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(B)

Estimate of
true phylogeny

Figure 33 (A) If phylogenies were repeatable experi-
ments, it would be possible to generate many indepen-
dent samples of characters for a given gene and taxa of
interest. In this case, the sampling variance about the
true phylogeny could be calculated directly from esti-
mates based on these independent samples. (B) Because

analyzed individually, and the proportion (P) of
the pseudosamples that support a given internal
branch on a tree is recorded.

How many pseudosamples must be gener-
ated to obtain a precise estimate of P? The sam-
pling variance of P follows the binomial distribu-
tion, such that o2 = P(1 — P)/n, where n is the
number of pseudosamples (S.B. Hedges, 1992).
For instance, if we draw 100 pseudosamples, the
sample variance of P ranges from a maximum of
0.0025 (when P is 50%) to a minimum of 0 (when
P is 0 or 100%). However, this just tells us how
similar the estimate of P is likely to be to what we
would obtain if we could analyze an infinite num-
ber of pseudosamples. It does not tell us anything
about the interpretation of P.

Felsenstein (1985a) originally suggested that
P could be used as a measure of repeatability, or
the probability that a specified internal branch

Estimate of
true phylogeny

Sampling
—> variance about
true phylogeny

Sampling
variance about
estimate of true
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>

phylogenies are not usually repeatable, it is not possi-
ble to draw more than one sample of characters for a
given gene and taxa of interest. Therefore, bootstrap-
ping is used to generate pseudosamples from the
unique sample, and sampling variance is calculated
from estimates based on these pseudosamples.

would be found in an analysis of a new, indepen-
dent sample of characters (assuming we could re-
play the evolutionary tape). More recently, Felsen-
stein and Kishino (1993) have suggested that P
can be interpreted as a measure of accuracy, or the
probability that the specified branch is contained
in the true tree (assuming that the phylogenetic
method is consistent).

Hillis and Bull (1993) examined these two in-
terpretations of bootstrap proportions, using both
simulated and known experimental phylogenies.
They found that bootstrap proportions provide
relatively unbiased, but highly imprecise, esti-
mates of repeatability. They also found that boot-
strap proportions provide biased estimates of ac-
curacy (a result that was also found analytically
by Zharkikh and Li, 1992a,b, for four-taxon trees
both with and without a molecular clock). When
the phylogenetic method is consistent, bootstrap-



ping gives underestimates of accuracy at high
bootstrap values, and overestimates of accuracy at
low bootstrap values. The extent of the bias de-
pends (at least) on the number of taxa, the num-
ber of characters, and the location of the internal
branch in the tree (Hillis and Bull, 1993; Zharkikh
and Li, 1995; Li and Zharkikh, 1995).

Two corrections have been proposed to recal-
ibrate bootstrap proportions to account for this
bias. Rodrigo (1993) proposed using an iterated
bootstrap (Hall and Martin, 1988). This involves
bootstrapping each of the pseudosamples ob-
tained in the first round of bootstrapping, and
thus is computationally very intensive. Zharkikh
and Li (1995) showed that a simpler correction
can be obtained with just two rounds of boot-
strapping on the original sample (with one set of
pseudoreplicates the same size as the original
data matrix, and the other set of pseudoreplicates
with reduced character matrices). The estimates
from the two sets of pseudoreplicates can be com-
bined along with a correction for sample size to
produce a corrected estimate of phylogenetic ac-
curacy. The simulations of Zharkikh and Li (1995)
indicate that this complete-and-partial bootstrap
technique can be effective for reducing the bias of
bootstrap proportions, at least if the number of in-
formative characters in the original data set is
large (=100).

As with other methods, for a valid test using
bootstrapping the null hypothesis should be spec-
ified in advance. Otherwise, we run into a multi-
ple-tests problem similar to the one arising in a
posteriori comparison of means following an
analysis of variance: inflation of the type I error
rate above the nominal level. (The problem may
be circumvented to some degree if the researcher
interprets the frequency in which a group appears
in replicate trees as an index of support rather
than as a statistical statement, but this interpreta-
tion is far from satisfactory.) If we are interested
in testing more than one internal branch or if we
are unable to pre-specify the branch(es) of inter-
est, we can adjust the significance level to allow
for the fact that we are conducting more than one
test (e.g., by dividing the significance level by the
number of tests implied). However, if the
branches of interest cannot be pre-specified, the
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number of potential branches is often so large that
an almost hopelessly low alpha level would be re-
quired in order to maintain an overall type I error
rate of, say, 0.05.

Another concern is the assumption that the
sequence positions are changing independently of
one another. To the extent that this is not true, the
pseudosamples will be too large, and the boot-
strap values will be higher than they would be
otherwise. It is also important to note that the
bootstrap can only assume that the data at hand
are representative of the underlying distribution
and thereby estimate the variation that would be
obtained by sampling additional data from that
distribution. If the data are not representative or
if the reconstruction method makes an inconsis-
tent estimate of the phylogeny, then bootstrap-
ping will not remove this bias.

Bootstrapping and jackknifing can be used ei-
ther with methods that operate on characters di-
rectly or with methods in which character data are
first transformed into distances. In character-
based methods, weighting vectors corresponding
to the number of times each character is sampled
can be constructed and input to the analysis. For
distance methods, the resampling is conducted
prior to calculation of the distance matrix; each
replication is then performed using a different in-
put matrix corresponding to the replicate sample.
However, an additional source of bias exists with
methods that make non-linear transformations of
sequence data (including distance corrections).
Under these conditions, the bootstrap will (in ex-
pectation) overestimate the variance of the cor-
rected data (e.g., Waddell et al., 1994), which leads
to conservative tests of significance .

Finally, the bootstrap replicates should be
evaluated under an optimality criterion rather
than just a tree-building algorithm. Otherwise,
any bias of the algorithm will artificially inflate
the bootstrap proportions. Imagine, for example,
an algorithm that clustered taxa solely on the ba-
sis of their input order in the data matrix. Even
with no data, such an algorithm would find the
same tree for every pseudoreplicate. However,
the resulting 100% bootstrap proportions would
bear no relation to any measure of phylogenetic
accuracy.
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APPENDIX: PROGRAMS AND SOFTWARE PACKAGES AVAILABLE
FOR CONDUCTING PHYLOGENETIC AND POPULATION GENETIC

ANALYSES

Some of this information was extracted from a file compiled by J. Felsenstein and
distributed as part of the PHYLIP documentation in the file main.doc. That file
should be consulted for recent updates on availability and information about new

programs.

Program/Package

(author)

Operating system
or source code

Applications

Availability

ABLE
(J. Dopazo)

CAIC
(A. Purvis and
A. Rambaul)

CLADOS
(K. Nixon)

CLINCH
(K. Fiala and
G. Estabrook)

ClustalW

(D. Higgins,

]J. Thompson,
and T. Gibson)

Component
(R. Page)

COMPROB
(C. Meacham)

DNArates
(G.]. Olsen)

Evomony
(J. A. Lake)

FastDNAmI
(G.]. Olsen)

DOS

Macintosh OS

DOS

DOS and
FORTRAN
source code

Macintosh OS,
DOS,
C source code

Windows

Pascal source
code

C source code

DOS

C source code
(can be com-
piled for paral-
lel processing)

To implement a form of para-
metric bootstrapping in con-
junction with PHYLIP

For comparative analysis of
independent contrasts, with
partially or fully resolved trees

Mapping characters and
manipulation of trees

Compatibility analysis

Primarily for sequence align-
ment, but includes the neigh-
bor-joining algorithm and boot-

strapping

Tree comparison and consensus
methods for coevolutionary and
biogeographic analyses

To compute the probability that
characters would be compatible
in random data

Site-by-site maximum likeli-

hood estimation of the rate of
nucleotide substitution from a
sequence alignment and a tree

For Lake’s method of invariants
(Lake, 1987a)

A faster adaptation of DNAmI
from PHYLIP (version 3.3) for
use on workstations, main-
frames, or supercomputers
(including parallel machines)

By anonymous ftp from
ftp.cnb.uam.es (in directory
software/molevol)

By anonymous ftp from
evolve.zps.ox.ac.uk (in direc-
tory packages/CAIC)

Contact K. Nixon, L. H. Bailey
Hortorium, Cornell University,
Ithaca, New York 14853 USA

By anonymous ftp from
muse.bio.cornell.edu (in direc-
tory pub/software/clinch)

By anonymous ftp from
ftp.embl-Heidelberg.de (in
directory pub/software) or
ftp.bio.indiana.edu (in direc-
tory molbio/align)

Contact L. Timpson at
emt@nhm.ic.ac.uk or an
order form is available on
the World Wide Web at
http:// evolve.zps.ox.ac.uk /
Rod/cpw.html

Contact C. Meacham at
meacham@violet.berkeley.edu

From the World Wide Web at
http:/ /rdpwww.life.uiuc.edu,
or by anonymous ftp from
rdp.life.uiuc.edu (in directory
pub/RDP/programs/
fastDINAmI)

Contact J. A. Lake at
lake@uclaue.mbi.ucla.edu

From the World Wide Web at
http:/ /rdpwww life.uiuc.edu,
or by anonymous ftp from
rdp.life.uiuc.edu (in directory
pub/RDP/programs/
fastDNAmI)

(continued)
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Program/Package

Operating system

(author) or source code Applications Availability
MALIGN Macintosh OS, Simultaneous alignment of mul- Contact W. C. Wheeler
(W. C. Wheeler DOS, Unix, tiple sequences and construction (Department of Invertebrates,
and D. Gladstein) and C souce of parsimony trees. Code for American Museum of Natural
code implementation on parallel History, Central Park West at

MARKOV
(G. Pesole and
C. Saccone)

MEGA

(S. Kumar,

K. Tamura, and
M. Nei)

METREE

Molevol
(W. Fitch)

MOLPHY
(J. Adachi
and M. Hasegawa)

MUST and 35
(H. Philippe)

NONA
(P. Goloboff)

architectures is available

FORTRAN To compute distance measures
source code and substitution matrices under
a stationary Markov model of
DNA substitution. Bootstrapping
is included to assess the reliability
of the results

DOS Calculation of nucleotide and pro-
tein pairwise distances, and calcu-
lation of trees using the neighbor-
joining and UPGMA algorithms.
Also searching capabilities under
the parsimony criterion using
stepwise addition, local branch-
swapping, or branch-and-bound
algorithms. Includes bootstrap-
ping and tests for comparing the
length of two additive trees

DOS Search for trees under minimum
evolution criterion; with standard
errors and significance tests

DOS, A package of about 20 programs
FORTRAN for estimating parsimony and
source code distance trees, dynamic weighting,

alignment, searching for second-
ary structure, and other analyses
of molecular data

C source code A package of programs for maxi-
mum likelihood analyses with
either nucleotide (NUCML) or
protein (PROTML) sequences,
basic statistics of nucleotide
(NUCST) and protein (PROTST)
sequences, and neighbor-joining
analysis (NJDIST)

DOS Sequence management, analysis
of taxon sampling effects, and
estimation of appropriate se-
quence lengths for a given
analysis

DOS For parsimony analyses using
Hennig86 data file format but
with no limit on the number of
taxa and characters

79th Street, New York, NY
10024-5192, USA) or source
code is available by anony-
mous ftp from ftp.amnh.org

Contact C. Lanave at
lanave@vaxba0.ba.it

Institute of Molecular Evo-
lutionary Genetics, Pennsyl-
vania State University, Uni-
versity Park, Pennsylvania
16802 USA
(imeg@psuvm.psu.edu)

Contact M. Nei (same address
as MEGA)

Contact W. Fitch at
wfitch@daedalus.bio.uci.edu

By anonymous ftp from
sunmh.ism.ac.jp

Contact H. Philippe at
hp@bio4.bec4.u-psud.fr

Contact P. Goloboff at Depart-
ment of Entomology, Ameri-
can Museum of Natural His-
tory, Central Park West at 79th
St., New York, New York 10024

(continued)
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Applications

Availability

ODEN
(Y. Ina)

PAML
(Z. Yang)

PARBOOT
(P. Roux and
T. Littlejohn)

PAUP?
(D. L. Swofford)

Pee-Wee
(P. Goloboff)

PHYLIP
(J. Felsenstein)

C source code

C source code

C source code

Macintosh OS,
DOS, Unix,
VAX/VMS

DOS

DOS, Windows,
Macintosh OS5,
C source code

For distance matrix analyses on
nucleotide or protein sequences

A package mostly for maximum
likelihood analyses with either
nucleotide or protein sequences.
Includes programs for recon-
struction of ancestral sequences
and conducting analyses of mul-
tiple genes (baseml, codonml)
and simulating trees (meml) un-
der maximum likelihood. Also
includes a parsimony program
(pamp) for estimating substitu-
tion matrices, intersite variability
of rates of evolution, and an-
cestral states

For parallel processing of boot-
strapped data sets in conjunction
with PHYLIP

For finding and evaluating trees
under the minimum evolution,
DNA maximum likelihood, and
parsimony (including generalized
parsimony) criteria. Includes
branch swapping, branch-and-
bound, and exhaustive searches.
Reliability of trees may be assessed
with permutation tests, decay/sup-
port indices, bootstrapping, in-
variant tests, or maximum likeli-
hood scores. Includes extensive
pairwise distance calculations,
consensus techniques, and recon-
struction of ancestral states using
parsimony and likelihood methods

For parsimony analyses using
character weights determined by
their homoplasy during tree search

A package of 30 programs, in-
cluding parsimony, methods of
invariants, maximum likelihood
(for nucleotide, protein, and restric-
tion site data), distance methods,
and compatibility analysis. Search-
ing by stepwise addition, branch
swapping, and the branch-and-
bound algorithm for some methods.
Includes bootstrapping, tree draw-
ing, assessment of independent con-

trasts, various statistical tests of trees,

and consensus analysis

By anonymous ftp from
bioslave.uio.no (in directory
pub/oden)

By anonymous ftp from
ftp.bio.indiana.edu (in direc-
tory molbio/evolve)

By anonymous ftp from
megasun.bch.umontreal.ca

Sinauer Associates, Sunderland,
Massachusetts 01375 USA
(orders@sinauer.com)

Contact F. Goloboff at Depart-
ment of Entomology, American
Museum of Natural History,
Central Park West at 79th St.,
New York, New York 10024

By anonymous ftp from evolu-
tion.genetics.washington.edu
(in directory pub/phylip) or
from the World Wide Web site:
(http:/ /evolution.genetics.
washington.edu/ phylip.html)

(continued)
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Program/Package
(author)

Operating system
or source code

Applications

Availability

Random Cladistics

(Mark Siddall)

RAPDistance

(J. S. Armstrong,
A.]. Gibbs,

R. Peakall,

and G. Weiller)

REAP

(D. McElroy,

P. Moran,

E. Bermingham,
and L. Kornfield)

Relatedness
(K. F. Goodnight)

RESTSITE
(J. C. Miller)

RSVP
(K. Rice)

The Siminator
(J. Huelsenbeck)

Splits
(R. Wetzel and
D. Huson)

TreeAlign
(J. Hein)

TREECON
(Y. van de Peer)

VOSTORG
(A. Zharkikh
and A. Rzhetsky)

WINAMOVA
(L. Excoffier)

DOS

DOS, Windows

Macintosh OS

C source code

C source code

Macintosh OS

C source code

DOS, Windows

DOS, Windows

For conducting permutation tests,
bootstrapping, or jackknifing in
conjunction with Hennig86

For computing distance matrices
in RAPD analyses

Estimation of sequence diver-
gences, nucleotide and restriction
site diversity; tests for hetero-
geneity of allele frequencies using
randomization methods

For calculation of relatedness
statistics from allele frequencies

Manipulation of restriction site
data and estimation of sequence
divergences; neighbor joining

For calculating distance matrices
and measures of variability from
restriction map data

For simulation of data under
several models of nucleotide
substitution for use in parametric
bootstrap analyses

For conducting split decompos-
ition analyses

Simultaneous construction of trees
(with approximate parsimony or
distance methods) and alignment
of multiple sequences

For distance methods with
molecular data sets. Includes
bootstrapping and tree drawing
capabilities

Alignment of sequences and calcu-
lation of parsimony and distance
trees. Other programs available at
this address (by A. Zharkikh, in the
directory zharkikh /bootstrap /
double-bootstrap) conduct full-
and-partial bootstrap analyses

Analysis of genetic structure of
populations using an analysis of
variance approach

By anonymous ftp from
zoo.utoronto.ca/pub
(random.doc and random.exe)

By anonymous ftp from
life.anu.edu.au (in directory
pub/RAPDistance)

Contact D. McElroy
(mcelrdm@wkuvxl.wku.edu)

Contact K. F. Goodnight, De-
partment of Ecology and Evo-
lutionary Biology, Rice Uni-
versity, Houston, Texas 77252
(keithg@whittaker.rice.edu)

Contact J. C. Miller, Whitehead
Institute, 9 Cambridge Center,
Cambridge, Massachusetts
02142

By anonymous ftp from
oeb.harvard.edu (in directory
rice)

By anonymous ftp from
onyx.si.edu or from the
World Wide Web at http: //
mws?7.biol.berkeley.edu/
john/john.html

Contact D. Huson at
huson@mathematik.
unibielefeld.de

By anonymous ftp from
ftp.bio.indiana.edu (in direc-
tory molbio/align)

By anonymous ftp from
uiam3.uia.ac.be

By anonymous ftp from
hgcé.sph.uth.tmc.edu

By anonymous ftp from
acasunl.unige.ch (in directory
pub/amova)
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