Origins of Life & the
Cambrian Explosion
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FIG. 1 The largest impacts on Earth and Moon. Open boxes are lunar, filled
boxes terrestrial. Lunar craters are Tycho, Copernicus, Langrenus, Hausen,
Tsiolkovski, Iridum, Orientale and Imbrium. Terrestrial events are the K/T
impact, Manicougan, Sudbury, Vredevort and an impact energy corresponding
to the thickness of Archaean spherule beds. Ovals are self energies of
formation; the early box refers to a possible Moon-forming impact. Impact
estimates between 3.8 and 4.4 Gyr are discussed in the text. The stippled
region for Earth is inferred from these data. The depth of ocean vaporized
by the impact is also given; the dashed line corresponds to an ocean-

vaporizing impact. A possible but extremely unlikely collision with Chiron is
placed safely in the future.

Impact Frustration period
forces origins of life into

a narrow time period to
have gotten started!

Hydrothermal vents may
have served as zones of
refuge.



Origin of Life???
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Figure 1. Diagrammatic “Universal” phylogenetic tree of life, based on small-subunit ribosomal RNA
sequences. Based on analyses of Barns et al. {1996b), Olsen et al. (1994), and Sogin (1994).



Some Lessons from the BIG TREE:
Map of the Biological Record

Single origin for all life on Earth...

 Central Dogma intact

e ATP and PMF are universal themes

« Uniformity among chiral carbon compds (sugars & AAS)
 Hot start origin...

 Also Cyanobacteria did not arrive first on the scene!




Some Lessons from the BIG TREE:
Map of the Biological Record

General topology implies:

Three “primary lines of evolutionary descent.”

The Eucarya “nuclear” lineage almost as old as the

prokaryote lines.

 Prokaryotes split between Bacteria and Archaea.

 Mitochondria and chloroplasts proven to be of
bacterial origin.
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The Chemical Aspects of The Origin of Life

Life is the cumulative product of interactions among the many kinds
of chemical substances that make up the cells of an organism.

The abiotic chemical evolution of life follows four major hurdles:

1. The abiotic synthesis and accumulation of small organic
molecules, or monomers, such as amino acids and
nucleotides.

2. The joining of these monomers into polymers, including
proteins and nucleic acids.

3. The aggregation of abiotically produced molecules into
droplets, e.g., protobionts, that had chemical
characteristics different from their surroundings.

4. The origin of heredity or information transference.



To understand how the origin of life from abiotic material
occurred, we have to consider two critical concepts:

1. The extension of the idea of natural selection to the chemical
level.

2. The realization that the condition of the early Earth when life
first arose must have been vastly different from present:

(a) Non-oxidizing atmosphere: present level of oxygen,
which began to accumulate around 2.1 billion years ago
with the presence of cyanobacteria, would have been
lethal to simpler organisms

(b) Abundant resources produced non-biologically

(c) Long time scale without competition
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Figure 10.10 Synopsis of chemical transformations in the thioester world illus-

trating: (1) a pool of thicesters; (2) polymerisation of protoenzymes; (3) generation of
high-energy phosphate esters; (4) generation of pyrophosphate, a primordial energy
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Origins of Life
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Figure 10.6 Relationships among various theoretical or conceptual models for the
origins of life.”” Dashed and solid lines at the bottom of the figure connect mechanisms with
putative metabolic type of first organisms. The thioester world is proposed as an intermediate
leading to an RNA world




The Molecular Clues to the Origin of Life on Earth

» Molecules of living organisms are rich in hydrogen-containing carbon
compounds that are highly reduced. This suggests that there was little or no
free molecular oxygen on early Earth.

 All amino acids exist in both the right-handed and left-handed state.
However, only 20 amino acids of the left-handed variety are used by living
organisms in proteins. Therefore, suggesting there was a single origin of life.

e DNA & RNA are the universal informational basis of all life forms on
Earth.

o ATP is the universal energy currency of all living organisms; suggesting a
common origin of metabolism.

e In any cell, first steps of carbohydrate metabolism involve fermentation,
with the last steps in aerobic organisms the usage of oxygen via respiration
— suggesting that aerobic organisms evolved from anaerobic ones.



The apparatus Miller et al. (1950s) used to simulate the conditions
of early Earth
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Necessary Conditions for the
Origin of Life

Before life appeared, polymerization reactions
generated the carbohydrates, lipids, amino
aclds, and nucleic acids of which organisms
are composed. These molecules accumulated
In the oceans.

Originally “Darwin’s Warm Pond” Hypothesis




A painting of early Earth showing volcanic activity and photosynthetic prokaryotes in dense mats
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Laboratory versions of protobionts

Glucose-phosphate

Phosphate

Maltose
(a) Simple reproduction (b) Simple metabolism

Putative “Metabolism’ of a Coacervate Drop



Protobionts: Enclosing Prebiotic
Systems

 DNA probably evolved after RNA-based life
became surrounded by membranes that
provided an environment in which DNA was

stable.
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Is Life Evolving from Nonlife Today?

e Because most of the chemical reactions that gave
rise to life occur readily under the conditions that
prevailed on early Earth, life’s evolution was
“probably” inevitable.

Experiments by Louis Pasteur and others
convinced scientists that life does not come from
nonlife on Earth today.




EXPERIMENT

Question: Pasteur asked “Does life generate spontaneously
or does it come only from already existing life”?

Experiment 1 METHOD Experiment 2

RESULTS

= Microbial No microbial —
growth growth

Conclusion: All life comes from existing life.

Pasteur (1860s) was also
the father of “origins of
life” research




Is Life Evolving from Nonlife Today?

* New life is no longer being assembled from nonliving
matter because simple biological molecules that form
In today’s environment are oxidized or consumed by
existing life.

 Now we have competition & oxygen!




Oldest Known Fossils of Living Organisms (~3500 Mya)




Fossil Stromatolites from Glacier Natl. Park




Living Columnar Stromatolites, Shark Bay, Western Australia




Modern Stromatolites from Yellowstone Natl. Park




Photosynthesis Is the Source of
Atmospheric O,

e Cyanobacteria, which evolved the ability to
split water into hydrogen ions and O,, created
atmospheric O,. Accumulation of free O, In
the atmosphere made possible the evolution of
aerobic metabolism.
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How do early organisms fit in the
tree of life?

Eukaryotes include multicellular lineages such Ear | I ESt fo S S I | S :

as animals, plants, and fungi, but they also

include a wide range of single-celled lineages ~ 1 8 b a
known as protists. Eukaryotic cells are easily EUKARYA .
distinguished from both bacteria and archaea.
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Like bacteria, archaea are also single-celled organisms that
Bacteria are single-celled organisms. Depending on the can be shaped like rods, filaments, or spheres. They also live
species, they may be shaped like rods, filaments, or spheres. in a wide range of habitats. While archaea cannot carry out
Bacteria exist in a wide range of ecological niches, as photosynthesis, they are capable of many other forms of
predators on other bacteria, as photosynthesizers, as metabolism, including methanogenesis. Archaea have a
heterotrophs, and as chemoautotrophs. Bacteria share certain number of biochemical features not found in bacteria or
traits not found in the other two domains of life, including a eukaryotes. The membranes of archaea contain glycerol-
membrane that contains peptidoglycan, and a unigue set of ether lipids, for example. Some researchers have proposed

five proteins that carry out RNA polymerization. that eukaryotes evolved from an archaean ancestor.



Oldest fossils of multicellular life
date back 2.1 billion years

* Unclear where they fit in the tree of life



First Eukaryotic Fossil: Grypania (~2100 Mya)

Fig. 1. Bed surface of Negaunee
Iron-Formation with numerous
fragments of Grypania and some
thicker filaments. Line represents
2-cm-wide strip of unfossiliferous
rock; coin is 18.5 mm in diameter.
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Fig. 2. Locality map and east-west cross sec-
tion of the Empire Mine showing the 1991 and
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5 projected positions of the pit surface.




Fig. 3. (A to D) Speci-
mens of Grypania from
the Negaunee Iron-For-
mation, Empire Mine. (E)
Large specimen of Gry-
pania spiralis, about
1100 million years old,
Rohtas Formation, Semri
Group, Vindhyan Super-
group, central India.
Scale bar in (C) (applies
to A to D), 1 cm; scale
barin (E), 1 cm.

First Eukaryotic Fossil: Grypania (~2100 Mya)

~2.1 Bya

~1.1 Bya

Flig. 5. Cartoon showing the major branches of
the universal tree of life and the presumed
position of Grypania in the tree.




Eukaryotic multicelluar life

o Earliest fossils of algae date
to 1.6 bya

— Red algae: 1.2 bya
— Green algae: 750 mya

Red algae fossil; 1.2 bya



The dawn of animals

o Early animal life resemble sponges
— Oldest fossils 650 myo

— Biomarkers also demonstrate existence of
sponges during this time




Search for early animals can be
controversial

Animal embryos or single cell with cyst?



2 2 1 Earth’s Geological History (Part 1)
RELATIVE TIME
SPAN ERA PERIOD ONSET MAJOR PHYSICAL CHANGES ON EARTH
T % Quaternary 1.8 mya~ Cold /dry climate; repeated glaciations
\, Cenozoic
",1 & Tertiary 65 mya Continents near current positions; climate cools
& Cretaceous 144 mya Northern continents attached; Gondwana drifts
b apart; meteorite strikes Yucatdn Peninsula
1 Mesozoic Jurassic 206 mya Two large continents form: Laurasia and
A Gondwana; climate warm
E '1‘ Triassic 248 mya Pangaea begins to drift apart; hot/ humid climate
I': Permian 290 mya Continents aggregate into Pangaea; large
: glaciers form; dry climates form in interior
': of Pangaea
c ". Carboniferous 354 mya Climate cools; marked latitudinal climate
= \ gradients
2 ’: Devonian 417 mya Continents collide at end of period; asteroid
= i Paleozoic probably collides with Earth
9 ' Silurian 443 mya Sea levels rise; two large continents form;
R :I hot/humid climate
] Ordovician 490 mya Gondwana moves over South Pole; massive
| glaciation, sea level drops 50 m
'= Cambrian 543 mya O, levels approach current levels
600 mya O, level at >5% of current level
Precambrian 1.5 bya O, level at >1% of current level
3.8 bya O, first appears in atmosphere
4.5 bya

"mya, million years ago; bya, billion years ago.
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Figure 2.7 Cumulative history of O; released by photosynthesis through geologic time. Of
more than 5.1 X 10% g of O; released, about 98% is contained in seawater and sedimentary
rocks, beginning with the occurrence of Banded Iron Formations at least 3.5 billion years
ago (bva). Although O, was released to the atmosphere beginning about 2.0 bya, it was
consumed in terrestrial weathering processes to form Red Beds, so that the accumulation of O,
to present levels in the atmosphere was delayed 1o 400 mya. Modified from Schidlowski (1980).

Present-day location of O,



Banded iron formations are evidence of oxygenic photosynthesis




Ediacaran fauna

* Diverse and unique animals dominated the
oceans from 575 — 535 mya

— Many hard to place taxonomically




Evolution of Ediacaran fauna
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Currently existing lineages
recognizable during the early Cambrian
H S

Early Cambrian: 542 — 511 mya



Chordates emerged during early
Cambrian




Key Concepts

* Only a fraction of Ediacaran fauna share
traits with existing lineages
— Almost all extinct within 40 million years
 Most existing lineages are found in the
fossil record during the Cambrian period
— Includes our own lineage, the chordates



A recent estimate of relationships among animal phyla
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Transition from ocean to land a
major event in evolution

* Prokaryotes colonized terrestrial
environments first
— Fossils date to 2.6 bya

» Terrestrial animals, plants, and fungi,
appeared much later



First terrestrial plant and fungal life

e Oldest terrestrial plant fossils
are 4/5 myo

— Early plants resembled
mosses and liverworts

e Large forest ecosystems
within 100 million years

 Fungi appear ~ 400 myo
— Associated with plants




First terrestrial animal life

* Invertebrate trackways date to 480 mya
— Probably relatives of insects and spiders

— Not clear whether they lived on land
permanently

* Oldest fossil of fully terrestrial animal
dates to 428 mya



First terrestrial vertebrates

e Oldest trackways date to 390 mya
e Oldest fossils of tetrapods date to 370 mya




Familiar forms of life did not
emerge until recently

* 350 million years ago many currently
existing lineages had yet to evolve
— Teleost fish
— Mammals
— Birds
— Flowering plants
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Patterns of Evolutionary Change

« Multicellularity requires atmospheric oxygen and
aerobic respiration!

- This gave rise to the Cambrian Explosion

e The Oxygen “Blip” @ ~300 Mya resulted from the
Invasion of land by plants!

. This gave rise to:
. Glgantic Insects
. Origin of Flight by Dragonflies
. Invasion of land by Vertebrate Animals




Evolution of mammals

« Mammals evolved from
synapsids
— Dominant vertebrates
around 280 myo

— First mammals
emerged 150 mya




Evolution of other major lineages

e Birds: ~150 mya
— Descendants of dinosaurs

* Flowering plants: ~132 mya
— Grasses did not diversify until ~20 mya

* Insects: emerged ~400 mya but most
current lineages appear much later



Diversification of mammals

« Mammals diversified after dinosaurs went
extinct (~65 mya)

 Whales, bats, and primates all emerged
around 50 mya

-




Oldest human fossils are ~200,000
years old




Key Concepts

 Many of the most diverse existing plant
and animal lineages evolved relatively
recently

* Fortuitous Contingency concept once
again regarding oxygen and extinctions,
etc.



RELATIVE TIME
SPAN

_—
\

Precambrian

22 1 Earth’s Geological History (Part 2)

ERA PERIOD ONSET MAJOR EVENTS IN THE HISTORY OF LIFE
Quaternary 1.8 mya” Humans evolve; many large mammals become extinct
Cenozoic
Tertiary 65 mya Diversification of birds, mammals, flowering plants,
and insects
Cretaceous 144 mya Dinosaurs continue to diversify; flowering plants and
mammals diversify. Mass Extinction at end of period
(=76% of species disappear)
Mesozoic Jurassic 206 mya Diverse dinosaurs; radiation of ray-finned fishes
Triassic 248 mya Early dinosaurs; first mammals; marine invertebrates
diversify; first flowering plants; Mass Extinction at
end of period (=65% of species disappear)
Permian 290 mya Reptiles diversify; amphibians decline; Mass Extinction
at end of period (=96% of species disappear)
Carboniferous 354 mya Extensive “fern” forests; first reptiles; insects diversify
Devonian 417 mya Fishes diversify; first insects and amphibians. Mass
Paleozoic Extinction at end of period (=75% of species disappear)
Silurian 443 mya Jawless fishes diversify; first ray-finned fishes; plants
and animals colonize land
Ordovician 490 mya Mass Extinction at end of period (=75% of species
disappear)
Cambrian 543 mya Most animal phyla present; diverse algae
600 mya Ediacaran fauna
Precambiian 1.5 bya“ Eukaryotes evolve; several animal phyla appear
3.8 bya Origin of life; prokaryotes flourish
4.5 bya

"mya, million years ago; bya, billion years ago.



The Phanerozoic Eon
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Sea Levels Have Changed Repeatedly
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Hot/Humid and Cold/Dry Conditions Have
Alternated Over Earth’s History

Earth’s mean temperature
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Does Life Exist Elsewhere In the
Universe?

e Conditions that permit the evolution and maintenance
of simple prokaryotic life may be widespread in the
universe, but multicellular life has more stringent
requirements.

+ a planet with a relatively circular orbit

¢ a rapid rate of spin

+ nearby planets that intercept impacts

+ a large moon that stabilizes the planet’s orbit
+ a magnetic field

Such conditions may be very rare.




Europa, Jupiter’s moon: Astrobiology???
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The habitability of Europa. At present, our understanding
of the conditions necessary for life can be distilled down to
three broad requirements: (1) a sustained liquid water
v a Hy: environment, (2) a suite of elements critical for building
B, o Dimethy life (e.g., C, H, N, O, P, S), and (3) a source of energy that
AL Hows can be utilized by life. Here we show how these “pillars of
habitability” intersect with our current understanding of
the conditions on, and within, Europa.




