

What is Population Genetics?

• The study of alleles becoming more or less common over time.

• Applied Meiosis: Application of Mendel's Law of segregation of alleles.

• Hardy-Weinberg Equilibrium Principle: Acts as a null hypothesis for tracking **allele** and **genotype** frequencies in a population in the absence of evolutionary forces.

Expected Genotype Frequencies in the <u>Absence</u> of Evolution are Determined by the Hardy-Weinberg Equation.

Assumptions:

- 1) No mutation
- 2) Random mating (panmictic)
- 3) Infinite population size (No drift)
- 4) No migration or gene flow
- 5) No selection (= survival & reproduction)

Non-Random Mating

Assortative mating

Usually positive with likelihood of

mating with similar phenotype.

• Inbreeding

- Special case of assortative mating.
 The closer the kinship, the more alleles shared and the greater the degree of inbreeding.
- Inbreeding increases homozygotes,
- while decreasing heterozygotes.
- Can expose deleterious recessives
- to selection.

Effects of Migration

- Generally considered a one-way proposition.
- Overall acts to prevent species divergence in populations.

3
5
4
4
6
9
5.12 ⁸
.87
15
ferent letters indicat

