Molecular Evolution &
the Origin of Variation

What Is Molecular Evolution?

* Molecular evolution differs from phenotypic evolution in
that mutations and genetic drift are much more important
determinants of molecular evolution.

» The goals of molecular evolution studies are to determine
patterns of evolutionary change in organisms’ molecules,
determine the processes that caused the changes, and use
those insights to solve other biological problems.

Neutral alleles are fixed slowly, whereas advantageous
and disadvantageous alleles are fixed rapidly.
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Mechanisms that Act on the Diversity
of Genes and Alleles

* Mutation
« Drift (Dominant in Neutral theory)

« Selection (Dominant in Selectionist Theory)

Genome Organization

» C,tcurves — Three levels of structure in Eukaryotes.

« Size does not affect complexity of a Genome:
“C-value Paradox.”

¢ Zuckerkandl & Pauling — Clock-like thru time
supporting Neutral Theory.
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The sum of all the chromosome information is known as a karyotype with
22 pairs of autosomes and 1 pair of sex chromosomes.
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The of reassociation rate of dsDNA from various sources shows how
the rate decreases as the complexity of the organism and its genome increases.

If the same experiment is carried out using
DNA purified from a complex eukaryote,
such as human, then we do not see a
simple sigmoidal curve. Instead we see a
curve which is the sum of the reannealings
of many different components.
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The ""C-Value Paradox" Genome size (llobasos)
This chart shows the range of C-values [genome sizes] for a variety of organisms. “Simple"
prokaryotic organisms in general have less DNA per genome than do more complex,
eukaryotic organisms, such as Plants and Animals, and vertebrate animals have more DNA
than do invertebrates. The so-called C-Value Paradox refers to the observation that C-value
does not uniformly increase with respect to perceived complexity of organisms, especially
among "higher" vertebrate animals (red box). Note for examples that some Amphibians have
more than 10-fold more DNA than do Mammals, including humans.




The “C-Value Paradox™

There is in fact no "paradox."”

Evolution does not proceed in

a linear manner, nor is there a

linear succession of organisms
from "lower" to "higher."

Diagram of a eukaryotic gene, its initial transcript, and the mature mRNA transcript

Eukaryotic gene
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Rates of amino acid substitutions
in some molecules are relatively
constant over evolutionary time.

Source of New Genes and Alleles

« Old view: Inheritance of acquired characters.

» New view: Mutation is ultimate source of all

variation.

* Rem: Mutations in somatic vs. germ line cells.
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Types of Genetic Change

« Point mutations — molecular scale (source of new alleles)
« Base substitutions: transitions vs. transversions
« Replacement (non-synonymous) vs. silent substitutions (synonymous)
« Insertions and deletions may cause frameshift mutations

¢ Chromosome Rearrangements — macro-molecular scale
(tighter linkage as heterozygotes cannot recombine)

* Gene Duplications — safety in numbers (unequal crossing over
during meiosis)

« Polyploidization — change in chromosomal numbers (possible
new species)
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FiGUure 3.3 Temporal changes in the probability, F, of having a certain nucleotide
at a position starting with either the same nucleotide (upper line) or with a differ-
ent nucleotide (lower line). The dashed line denotes the equilibrium frequency (P
=0.25). & = 5% 10 substitutions per site per year.
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FIGURE 3.4 Two-parameter model of nucleotide substitution. The rate of transi-
tion (o) may not be equal to the rate of transversion ().

Examples of point mutations and consequences for MRNA & amino acid sequences

Original
sequence:

DNA:
RNA

Protein:  Ser

Base pair substitutions
Transition (A = G)

GCA
CCU ACU GCC AAA CGU
Thr Ala  Lys Arg

Transversion (A — T)

TGA TGA C TIT GCA TIT GCA
ACU ACU GC AAA  CGU AAA CGU
Thr Thr Ala Lys Arg Lys  Arg

Mutation Rates (rare for most part)

TABLE 8.3 Estimates of spontanecus mutation rates per base pair and per genome:
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Chromosome Rearrangements

(] Dieletion
— @O
u,
(losth

b} Duplication and deletion

]
L ABEFG]
—
[ _iscolercl
t

() Inversion

)

- —
ABCDEF G B A BIE D CIF G
() Reciprocal translocation

ABCDEFG ABLMNO
—
HIJKLMNO HI | KEDERG

Chromosome Inversion
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Chromosome Inversion
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Gene Duplication: Unequal Crossing Over

(A} Normal pairing (B) Mispairing
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(C) Unequal crossing over (D) Results of crossover
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Gene Families
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The Evolution of Human a-globin and B-globin Gene Families
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Mechanisms: Duplication, Mutation, Transposition, etc.
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Polyploidy

Unreduced gamete with
6 chromosomes

Karyotype of Zygote
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Offspring with
polyploid
karyotypes may
be viable and
self-fertile

Transposition

Some different kinds of transposable elements

(A) DNA transposon
Intron,  Exon,
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(B) Retroclements

(1) Non-LTR retrotransposon
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(2) Retrotransposon
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Transposition
A mutated low-density lipoprotein (LDL) gene in humans lacks exon 5

Normal LDL gene
Exon
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Barking Deer: Similar phenotype, dissimilar karyotype.

Structure and Function Considerations

Magnitude of genetic and phenotypic changes are not
necessarily correlated, most have little effect on fitness.

Repair mechanisms are not random, directed to specific
exons.

Point mutations at first and second position, usually
replacement.

Point mutations at third position, usually silent.
Most populations harbor considerable allele diversity.
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The surface of the major capsid protein (gpF) of phage strains $X174 and S13.
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Changes evolve slowly in regions of functionally significant molecules, but more
rapidly in regions where base substitutions do not affect molecule functioning.
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Each position is not equal!

Adaptation in experimental populations of E. coli

(Fitness is growth rate proportional to ancestor)

Fitness relative to ancestor =
e
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Adaptation in experimental populations of E. coli

Initial populations lacked
genetic diversity, increase
2000 in adaptation due to N.S.
acting on new mutations.
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Founder Effect in Drosophila subobscura
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