Phylogenetic Analysis

Aristotle

• Through classification, one might discover the essence and purpose of species.

Enaima (animals with blood)
Viviparous: Man
Cetacea
Quadrupeds Quadrupeds
Oviparous:
Perfect eggs: Birds
Scaly Quadrupeds
Imperfect eggs: Fishes
Anaima (bloodless animals)
Perfect eggs: Malacia
Malacostraca
Special eggs: Insects
Generative slime: Ostracoderma
Spontaneous generation: Zoophytes

Nelson & Platnick (1981) Systematics and Biogeography

Carl Linnaeus

- Swedish botanist (1700s)
- Listed all known species
- Developed scheme of classification to discover the plan of the Creator

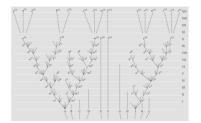
Linnaeus' Main Contributions

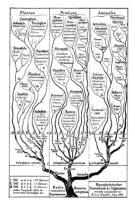
- 1) Hierarchical classification scheme
 - Kingdom: Phylum: Class: Order: Family: Genus: Species
- 2) Binomial nomenclature

Before Linnaeus physalis amno ramosissime ramis angulosis glabris foliis dentoserratis

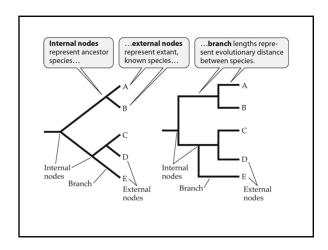

(aka Cutleaf groundcherry)

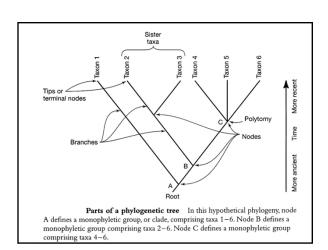
After Linnaeus

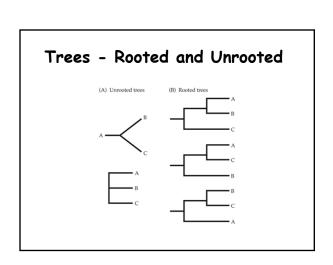

Physalis angulata

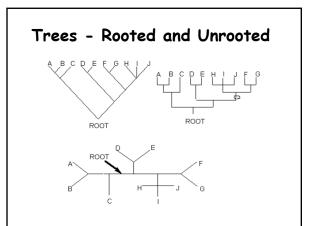

3) Originated the practice of using the ${\varnothing}$ - (shield and arrow) Mars and ${\mathbb Q}$ - (hand mirror) Venus glyphs as the symbol for male and female.

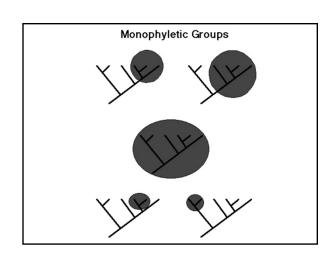
Charles Darwin

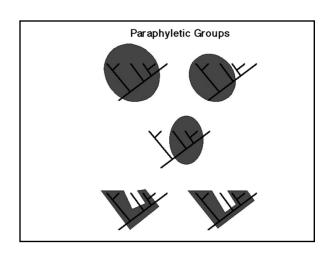


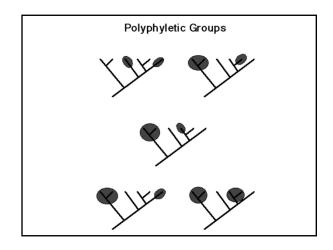

- Species evolved from common ancestors.
- Concept of closely related species being more recently diverged from a common ancestor. Therefore taxonomy might actually represent phylogeny!

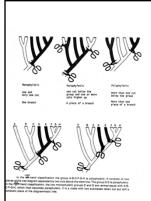


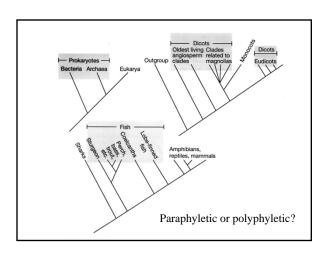



The phylogeny and classification of life a proposed by Haeckel (1866).









Monophyletic: A group composed of a collection of organisms, including the most recent common ancestor of all those organisms and all the descendants of that most recent common ancestor. A monophyletic taxon is also called a clade.

Paraphyletic: A group composed of a collection of organisms, including the most recent common ancestor of all those organisms. Unlike a monophyletic group, a paraphyletic group does not include all the descendants of the most recent common ancestor.

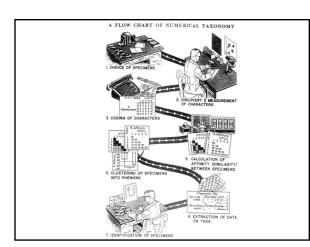
Polyphyletic: A group composed of a collection of organisms in which the most recent common ancestor of all the included organisms is not included, usually because the common ancestor lacks the characteristics of the group. Polyphyletic groups are considered "unnatural", and usually are reclassified once they are discovered.

Character Evolution

- Heritable changes (in morphology, gene sequences, etc.) produce different character states.
- Variability in terms of similarities and differences in character states provide the basis for inferring phylogeny (i.e., provide evidence of relationships).
- Independent occurrence of different character states is a necessary requirement. The more frequent the better the resolution.

Characters and Character States

- Organisms comprise sets of features.
- When organisms/taxa differ with respect to a feature (e.g., its presence or absence or different nucleotide bases at specific sites in a sequence) the different conditions are called *character states*.
- The collection of character states with respect to a feature constitute a *character*.

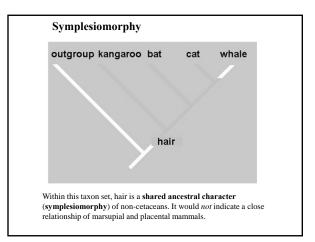

Theoretical advances in areas such as phenetics and cladistics have provided improved, empirical methods for framing and testing evolutionary hypotheses.							
	"overall similarity"						
PHENETICS	R.R. Sokal & P.H.A. Sneath (1963), Principles of numerical taxonomy						
	Cladistics						
W. Hennig (1963), Phylogenetic Systematics							
"shared, derived characters"	it's the real thing.						
	(Designs by D. Maddison)						

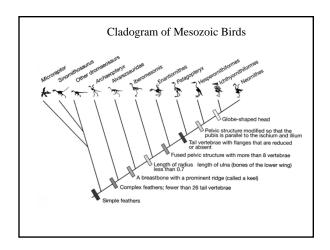
•			
•			
•			
•			
•			
•			

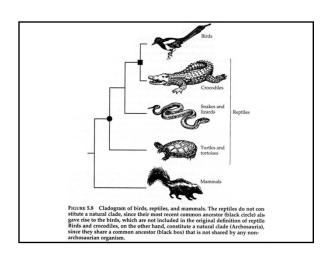
Numerical Taxonomy aka Phenetics

- Based on a numerical comparison of similarities and differences of a group of organisms.
- Gave a new sense of rigor. (eventually used computers!)
- The source of data: characters and character states.

The Terminology of Cladistics


Synapomorphy: a shared, <u>derived</u> character state.


These are the basis of cladistics!


Autapomorphy: a unique, derived character state.

 ${\color{red} Sym} \underline{\textbf{plesiomorphy}} : a \text{ shared, } \underline{\textbf{ancestral}} \text{ character state.}$

Only synapomorphies are used in order to avoid or minimize homoplasy.

Evolutionary Taxonomy

- Based on an overall impression of similarities and differences, borne out of years of study of a group of organisms.
- Seeks to classify organisms using a combination of phylogenetic relationship and overall similarity. It thus allows for paraphyletic taxa.

Why Might Similarities and Differences Be Unreliable for Inferring Phylogenies?

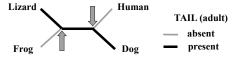
Homology vs. **homoplasy** (e.g., convergence, reversal, parallelism)

Why Might Similarities and Differences Be Unreliable for Inferring Phylogenies?

•Unequal rates of evolution

Why Might Similarities and Differences Be Unreliable for Inferring Phylogenies?

Homoplasy: similarity that is not homologous (not due to common ancestry). Can provide misleading evidence of phylogenetic relationships (if mistakenly interpreted as homology). Remember same as analogous structures or traits.

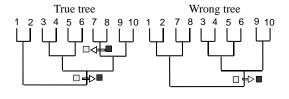

Parallelism refers to the independent evolution of the same derived trait via the same developmental changes.

Convergence refers to superficially similar traits that have a distinct developmental basis.

Reversal refers to return to the ancestral state. More problematic when considering molecular character data.

Homoplasy - independent evolution

• Loss of tails evolved independently in humans and frogs - there are two steps on the true tree.


Homoplasy - misleading evidence of phylogeny

• If misinterpreted as homology, the absence of tails would be evidence for a wrong tree: grouping humans with frogs and lizards with dogs.

Homoplasy - Reversal

- Reversals are evolutionary changes back to an ancestral condition.
- As with any homoplasy, reversals can provide misleading evidence of relationships.

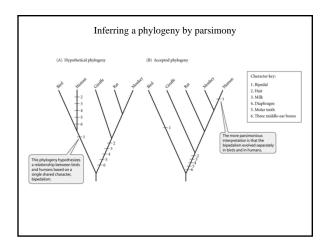
Ancestral vs. derived character states

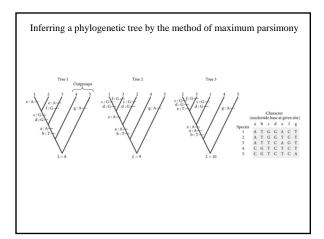
For lizards, dolphins, and horses, the ancestral character state is 4 limbs. A derived character state is the presence of mammary glands.

Phylogeny based on number of limbs.

Phylogeny based on mammary glands.

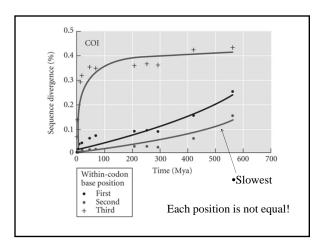
How do we determine if a trait (character state) is ancestral or derived?


- Fossil record
- Outgroup analysis
- Evolutionary Modeling


How Do We Improve on Cladistics?

• Ockham's Razor - "entities should not be multiplied unnecessarily" aka the KISS system.

- Parsimony the best estimate of phylogeny requires the fewest evolutionary changes to explain the distribution of shared derived character states (synapomorphies) in the organisms.
- Maximum Parsimony exhaustive examination of all possible trees, where trees with the fewest inferred changes between character states are the maximum parsimony trees.

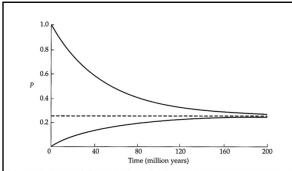
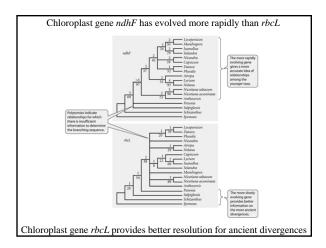
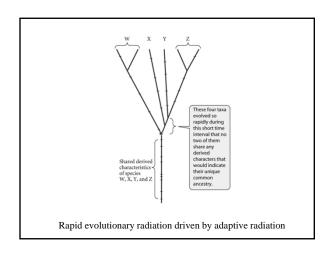


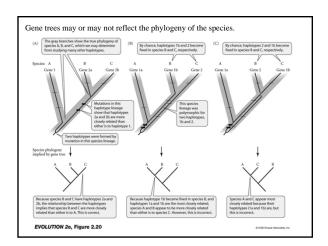
Phylogenetic Analysis: Other Algorythms using various Evolutionary Models

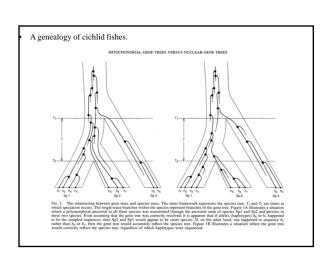
- Maximum likelihood
- Neighbor joining (Distance)
- Quartet Puzzling (Distance)
- Bayesian

Difficulties in Phylogenetics

- Scoring characters can be challenging
- Homoplasy may be common
- Evolutionary change may erase signs of evolutionary history
- Rapid radiation from a common ancestor
- Gene trees may imply the wrong phylogeny
- Hybridization and horizontal gene transfer

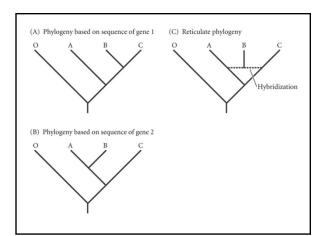




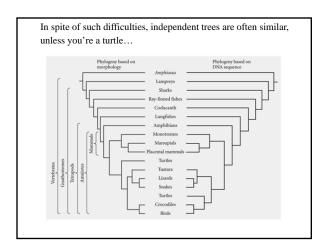

FIGURE 3.3 Temporal changes in the probability, P, of having a certain nucleotide at a position starting with either the same nucleotide (upper line) or with a different nucleotide (lower line). The dashed line denotes the equilibrium frequency (P = 0.25). $\alpha = 5 \times 10^{-9}$ substitutions per site per year.

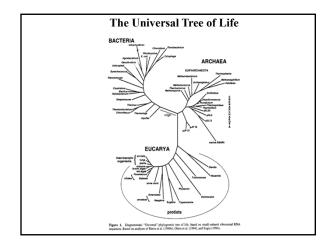


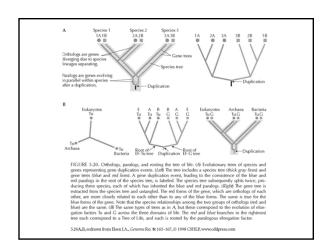
Difficulties in Phylogenetics

- Scoring characters can be challenging
- Homoplasy may be common
- Evolutionary change may erase signs of evolutionary history
- Rapid radiation from a common ancestor
- Gene trees may imply the wrong phylogeny
- Hybridization and horizontal gene transfer

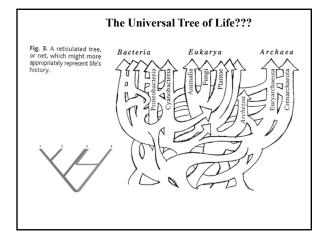







Difficulties in Phylogenetics

- Scoring characters can be challenging Homoplasy may be common
- Evolutionary change may erase signs of evolutionary history
- Rapid radiation from a common ancestor
 Gene trees may imply the wrong phylogeny
- Hybridization and horizontal gene transfer



Some Lessons from the BIG TREE of Life: Map of the Biological Record

Evolutionary "clock" is NOT constant among different lineages.

- Terminal nodes NOT all the same length, so not constant for all organisms either!
 • Endosymbionts sped up very fast (semi-autonomous
- organelles).
- Eucarya Fast clocks
- Archaea Slow clocks
- Bacteria Intermediate

Some Lessons from the BIG TREE of Life: Map of the Biological Record

What does genome sequencing and study of functional genomics add to our perspective?

- The central information processing machinery encompasses
- core genome.

 Metabolic functions, that's when relationships get murky.
- Endosymbiosis involved more than organelles, i.e., two-way transfer of genes with most going to the nucleus.
- Mitochondria have been at it much longer than chloroplasts.

Take Home Message

- Phylogeny is right or wrong, we try to infer it the best we can.
- Taxonomy is useful or not, depending upon your point of view.
- Phylogeny allows us to ask testable questions, e.g., hypothesis testing regarding evolutionary relationships.