

Selection

 <u>http://www.youtube.com/watch?v=a38K</u> mJ0Amhc&feature=PlayList&p=61E033 F110013706&index=0&playnext=1

- Start at 5:21 min

Onychophoran (velvet worm)

Fitness

 Definition: "The number of offspring an individual leaves after one generation"
 Simple definition, but difficult to measure

Fitness at the molecular level

- Gene: "The number of copies that a particular gene leaves after one generation"
- *Allele*: "Average fitness of genes carrying the particular allele"
- Genotype: "Average fitness of individuals carrying that genotype"

Components of fitness

- Overall fitness can be deconstructed into different components
- E.g.:
 - Surviving to adulthood
 - Chance of finding a mate
 - The number of offspring for each couple

W: Fitness when generations are discrete

• W for a specific genotype: -Fitness components are multiplied

W = average number of offspring after one generation = average probability of survival to adulthood * average probability of finding a mate * average number of offspring per adult

How big should W be to maintain a constant population size in a bisexual population?

Fisher's fundamental theorem

$$\Delta \overline{W} = \operatorname{var}_{A}(W) / \overline{W}$$

- The change in mean fitness of a population is due to the additive genetic variance in fitness divided by the current average fitness
- The higher the variance in fitness due to heritable additive factors the greater the effect of natural selection

Expected Genotype Frequencies in the Absence of Evolution are Determined by the Hardy-Weinberg Equation.

Assumptions:

- 1) No mutation
- 2) Random mating
- 3) Infinite population size
- 4) No immigration or emigration
- 5) No selection

Assumptions:

- 1) No mutation
- 2) Random mating
- 3) Infinite population size
- 4) No immigration or emigration
- 5) No selection

Hardy-Weinberg equilibrium is the null-model of evolutionary biology: No allele-frequency change = No evolution

Interactions with the environment

- With the environment
 - Density-dependent selection: Density affects different genotypes in a different manner
 - Frequency-dependent selection: Fitness depends on the relative frequencies of other genotypes

Space

- Evolutionary and ecological processes are spatio-temporal (occur in time and space)
- So far we have only considered time

