
BIOL 432 - Evolution

Lecture 8



Expected Genotype Frequencies in the 
Absence of Evolution are Determined 

by the Hardy-Weinberg Equation.
Assumptions:

1) No mutation

2) Random mating

3) Infinite population size

4) No immigration or emigration

5) No selection



Random genetic drift
• Evolution = change of allele 

frequency within a population
• Randomness cannot lead to 

adaptation
• Can nevertheless be a powerful 

evolutionary force
• Main mode by which non-

coding sequence evolves?



Populations

0

Population: Individuals of the same species in a 
particular area.
(Geneticists further often assume that mating is 
random and panmictic)   



Populations have a history
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Pedigrees
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Pedigree showing the ancestors of one individual in generation 1
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Genealogy
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Ancestry of a an allele carried by individual A
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Genealogy
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This allele shares its ancestry with other alleles

A



Demographic and genetic processes are 
intimately inked on the population level

• Average number of offspring is 2.2
– Overall population growth

Red and blue dots represent two different alleles



The simplest model: A haploid 
asexual population of constant size

• E.g. an idealized population of bacteria
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= single neutral mutation



• Assumptions:
– Mutation is neutral (has no selective 

advantage or disadvantage)
– Population size is constant
– Two possibilities: fission (I.e. reproduction) 

or death
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or 1:1



Eventually 
every 

lineage will 
go extinct



• Population with 
n=100 genes 
(copies)

Fate of different alleles

Only very few lineages 
are long lived



Why is this probability 
independent of population size?
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0 X X
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0 X X

or 1:1



Then why does drift have a greater 
effect in small populations?

18 gene copies 100 gene copies



Example: cape buffalo in game 
reserves of different size 

• Microsatellite 
study by Heller 
et al. 2010



Example: cape buffalo in game 
reserves of different size

• Reserves ranged in size from 
100 to 28,000 km2

Allelic richness = 
mean number of 
alleles across 
multiple 
microsatellite loci



In diploid organisms meiosis 
adds randomness



The Wright-Fisher Model

• Assumption: Population size is constant
• Assumption: Each individual produces a large 

number of gametes
• Assumption: Gametes are produced in proportion to 

parental allele frequencies
• Assumption: Mating of alleles is random
• Assumption: Generation are discrete

P Q Q Q

Frequency P = p = #P/2N =0.25 Frequency Q = q = #Q/2N = 0.75

N=2



The Wright-Fisher Model

• Which of the following outcomes is more likely?

= 0.75 x 0.75 x 0.75 x 0.75=0.32
• 0.32



The Wright-Fisher Model

= 0.75 x 0.75 x 0.75 x 0.25=0.105

= 0.75 x 0.75 x 0.75 x 0.25=0.105

= 0.75 x 0.75 x 0.75 x 0.25=0.105

= 0.75 x 0.75 x 0.75 x 0.25=0.105

=0.422

• 0.422



The Wright-Fisher Model

• 0.211

= 0.75 x 0.75 x 0.25 x 0.25=0.035

0.035 x 6 = 0.211



The Wright-Fisher Model

= 0.75 x 0.25 x 0.25 x 0.25=0.012

0.012 x 4 = 0.047

• 0.047



The Wright-Fisher Model

• 0.004

= 0.25 x 0.25 x 0.25 x 0.25=0.004



The outcome of the Wright-
Fisher model is described by 

the binomial distribution

• See table 28.1 (online on textbook site)

2N = n

Mean: 2Np

Variance: 2Npq

i = outcome with probability p (e.g. drawing a P allele for the next generation)



The Wright-Fisher model

• The probability for each of the 5 outcomes follows the 
binomial distribution

Mean=2Np
=2*2*0.25
=1

1/4=0.25
Mean allele 
frequency is 
expected to 
stay the 
same 



The Wright-Fisher model

• The probability for each of the 5 outcomes follows the 
binomial distribution

Variance=2Npq
=2*2*0.25*0.75
=0.75

Variance for allele 
frequency:
(p*q)/2N
=(0.25*0.75)/(2*2)
=0.047



Under the Wright-Fisher 
model the two alleles behave 

like competing clones 
• http://www.coalescent.dk/



The Wright-Fisher Model

• Theoretical expectation for allele frequency if 
drift continues for several generations



An experimental study of 
genetic drift in Drosophila

8 males x
8 females

Generation 0:
Frequency brown mutation = p = 0.5

N = 100 
populations

t = 19 
generations







Observed variance of allele frequency in 
Drosophila experiment does not fit the 

expected variance 

• But it fits for a smaller than the census 
population size, the effective population size

In previous generation

Population size 16

Population size 11.5



Effective Population size

The size of the ideal Fisher-Wright 
population that would give the same rate 
of random drift as the actual population

(I.e. if the census population size and the 
effective population size do not match the 
population deviates from the Wright-Fisher 
model) 



Population Size (N) vs. Effective Population Size (Ne)

Ne is what determines the strength of genetic drift

Factors that cause Ne to be less than N
• overlap of generations
• variation among indivs in reproductive success 



http://www.carnegiemnh.org

http://www.livingwilderness.com

http://wdfw.wa.gov



Population Size (N) vs. Effective Population Size (Ne)

Factors that cause Ne to be less than N

• overlap of generations
• variation among indivs in reproductive success
• unequal sex ratio 



http://www.cf.adfg.state.ak.us



Population Size (N) vs. Effective Population Size (Ne)

Factors that cause Ne to be less than N

• overlap of generations
• variation among indivs in reproductive success
• unequal sex ratio 
• fluctuations in population size



Average N: 725
Ne: 404



Population bottlenecks reduce variation and enhance genetic drift



http://www.fws.gov

http://www.nacwg.org

(approx. 1000 indivs in 1850s)



mtDNA variation in Whooping Cranes

Haplotype Pre-bottleneck Post-bottleneck

1 0 12
2 0 2
3 5 3
4 0 1*
5 1 0
6 1 0
7 2 0
8 1 0
9 1 0

*Present immediately after the bottleneck (1951), but not today.

Glenn et al. (1999) Conservation Biology 13: 1097-1107.



Effective population size of humans

Yoruba, NigeriaNorthern and Western Europe

Tenesa et al., Genome Res.  2007.   17:  520-526



How can we know about past 
effective population size?



What is the 
chance that 
two random 

alleles 
share an 

ancestor in 
the previous 
generation?

1/2N

Chances for coalescent event get smaller with fewer lineages sorting



E(T2)=2N/1

E(T3)=2N/3

E(T4)=2N/6

E(T5)=2N/10

E(T6)=2N/15

Branches get longer with fewer 
remaining lineages, even though N 
stays the same Expected times for 

coalescent events with 
6 to 2 lineages 
remaining



We can make predictions about  the 
average and variance of coalescent times -

but not about specific genealogies

• Some potential outcomes of evolution in a 
Wright-Fisher population



(Typical) constant population 
size genealogy

Null model for 
genealogies 
with no other 
forces than 
drift at 
constant size



Wright-Fisher Genealogy

0
-1
-2
-3
-4
-5
-6
-7

Null model for our expectations about the age of common 
ancestors



Genealogy of a bottleneck
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The most recent common ancestor of a random set of 
alleles is younger than it would be without a bottleneck



Bottleneck genealogy

Alleles trace 
back to a few 
ancestors in 
the recent 
past

bottleneck



The distribution of mutations in alleles can 
be used to estimate past population size 

Many old 
mutations are 
shared, but 
young 
mutations 
occur only in 
certain alleles


