BIOL 432 - Evolution

Lecture 8

Expected Genotype Frequencies in the

 Absence of Evolution are Determined by the Hardy-Weinberg Equation. Assumptions:1) No mutation
2) Random mating
3) Infinite population size
4) No immigration or emigration
5) No selection

Random genetic drift

- Evolution = change of allele frequency within a population
- Randomness cannot lead to adaptation
- Can nevertheless be a powerful evolutionary force
- Main mode by which noncoding sequence evolves?

Populations

Population: Individuals of the same species in a particular area.
(Geneticists further often assume that mating is random and panmictic)

Populations have a history

Pedigrees

Pedigree showing the ancestors of one individual in generation 1

Genealogy

Ancestry of a an allele carried by individual A

Genealogy

This allele shares its ancestry with other alleles

Demographic and genetic processes are intimately inked on the population level

Red and blue dots represent two different alleles

- Average number of offspring is 2.2
- Overall population growth

The simplest model: A haploid asexual population of constant size

- E.g. an idealized population of bacteria

- Assumptions:
- Mutation is neutral (has no selective advantage or disadvantage)
- Population size is constant
- Two possibilities: fission (I.e. reproduction) or death

Eventually
 every

lineage will go extinct

C
ןем!мns jo әэиечว

Generations

- Population with n=100 genes (copies)

Fate of different alleles

Only very few lineages are long lived

Why is this probability

 independent of population size?

Then why does drift have a greater effect in small populations?

18 gene copies

100 gene copies

Example: cape buffalo in game reserves of different size

- Microsatellite study by Heller et al. 2010

Example: cape buffalo in game reserves of different size

- Reserves ranged in size from 100 to $28,000 \mathrm{~km}^{2}$

Allelic richness = mean number of alleles across multiple microsatellite loci

In diploid organisms meiosis adds randomness

The Wright-Fisher Model

Frequency $\mathrm{P}=\mathrm{p}=\mathrm{\# P} / 2 \mathrm{~N}=0.25$

Frequency $\mathrm{Q}=\mathrm{q}=\# \mathrm{Q} / 2 \mathrm{~N}=0.75$

- Assumption: Population size is constant
- Assumption: Each individual produces a large number of gametes
- Assumption: Gametes are produced in proportion to parental allele frequencies
- Assumption: Mating of alleles is random
- Assumption: Generation are discrete

The Wright-Fisher Model

$=0.75 \times 0.75 \times 0.75 \times 0.75=0.32$

- 0.32
- Which of the following outcomes is more likely?

The Wright-Fisher Model

The Wright-Fisher Model

The Wright-Fisher Model

The Wright-Fisher Model

- 0.004

The outcome of the WrightFisher model is described by the binomial distribution

- See table 28.1 (online on textbook site)

The Wright-Fisher model

- The probability for each of the 5 outcomes follows the binomial distribution

The Wright-Fisher model

Variance $=2 \mathrm{Npq}$ $=2^{*} 2^{*} 0.25^{*} 0.75$ $=0.75$

Variance for allele frequency:
$\left(p^{*} q\right) / 2 N$
$=(0.25 * 0.75) /(2 * 2)$
$=0.047$

- The probability for each of the 5 outcomes follows the binomial distribution

Under the Wright-Fisher model the two alleles behave like competing clones

- http://www.coalescent.dk/

The Wright-Fisher Model

- Theoretical expectation for allele frequency if drift continues for several generations

An experimental study of genetic drift in Drosophila

Generation 0:
Frequency brown mutation $=p=0.5$

Observed variance of allele frequency in

 Drosophila experiment does not fit the expected varianceB

- But it fits for a smaller than the census population size, the effective population size

Effective Population size

The size of the ideal Fisher-Wright population that would give the same rate of random drift as the actual population
(I.e. if the census population size and the effective population size do not match the population deviates from the Wright-Fisher model)

Population Size (N) vs. Effective Population Size (\mathbf{N}_{e})

N_{e} is what determines the strength of genetic drift
Factors that cause \mathbf{N}_{e} to be less than \mathbf{N}

- overlap of generations
- variation among indivs in reproductive success

Population Size (N) vs. Effective Population Size (\mathbf{N}_{e})

Factors that cause \mathbf{N}_{e} to be less than \mathbf{N}

- overlap of generations
- variation among indivs in reproductive success
- unequal sex ratio

Population Size (N) vs. Effective Population Size (\mathbf{N}_{e})

Factors that cause N_{e} to be less than N

- overlap of generations
- variation among indivs in reproductive success
- unequal sex ratio
- fluctuations in population size

Average N: 725
N_{e} : 404

Population bottlenecks reduce variation and enhance genetic drift

(approx. 1000 indivs in 1850s)

mtDNA variation in Whooping Cranes

Haplotype	Pre-bottleneck	Post-bottleneck
1	0	12
2	0	2
3	5	3
4	0	1^{*}
5	1	0
6	1	0
7	2	0
8	1	0
9	1	0

*Present immediately after the bottleneck (1951), but not today.

Effective population size of humans

Tenesa et al., Genome Res. 2007. 17: 520-526

Northern and Western Europe

How can we know about past effective population size?

What is the chance that two random alleles share an ancestor in the previous generation?
$1 / 2 N$

b

Chances for coalescent event get smaller with fewer lineages sorting

Branches get longer with fewer remaining lineages, even though N stays the same

Expected times for coalescent events with 6 to 2 lineages remaining
$E(T 2)=2 N / 1$
$E(T 3)=2 N / 3$

$E(T 4)=2 N / 6$
$E(T 5)=2 N / 10$
$E(T 6)=2 N / 15$

We can make predictions about the average and variance of coalescent times but not about specific genealogies

Figure 2| Random genealogical trees. The trees were generated using the same model the standard coalescent for sample of size ten. Therefore, the varation among the trees reflects chance alone.

- Some potential outcomes of evolution in a Wright-Fisher population

(Typical) constant population size genealogy

A

Time

Null model for genealogies with no other forces than drift at constant size

Wright-Fisher Genealogy

Null model for our expectations about the age of common ancestors

Genealogy of a bottleneck

The most recent common ancestor of a random set of alleles is younger than it would be without a bottleneck

Bottleneck genealogy

B

Alleles trace back to a few ancestors in the recent past

Time

The distribution of mutations in alleles can be used to estimate past population size

 BMany old mutations are shared, but young mutations occur only in certain alleles

