

Why study plant disease?

Agriculture = food Lack of food = perhaps the most common disease worldwide

"One billion people in the world are undernourished, and need to consume more food to lead healthy, productive lives."

--State of the World 2006, the WorldWatch Institute

(population = 6.6 billion, expect 9 billion* by 2050 (about the time you start having grandchildren)

*Science Magazine's State of the Planet 2006-2007

Factors contributing to food insecurity

Inability to purchase food:

Socioeconomic factors Politico-economic factors

Inability to grow enough food:

Land fertility Water availability (irrigation) Poor crop yield Weather Weeds Insect herbivory *Plant disease*

Environment plays a big role in spread of plant diseases:

Insects, weather

Examples:

- Pierce's disease of grape (Xylella)
- Citrus canker (Xanthomonas)

Xylella fastidiosa: Pierce's Disease of Grape

Wiped out grape production in SE states

Vectors are leafhoppers (feed on xylem tissues): blue-green sharpshooter glassy-winged sharpshooter – introduced 1990 Leafhoppers overwinter in riverbeds; keep vineyard 300' from river (State of CA shares cost of land lost)

SEM of stomata on grapefruit leaf with *X. axonopodis* bacterial cells entering stomatal chamber. Water-soaking helps bacteria establish infection in mesophyll (beneath cuticle).

Pathogenesis: bacterial weaponry

Excreted products

1. Toxins:

---low molecular weight compounds that interfere with host functions.

2. Enzymes:

---a. nutrient acquisition (e.g. proteases for amino acids, amylases for saccharides). ---b. tissue degradation: cellulases and polygalacturonases.

Halo blight of bean: toxin

Soft rot: enzymatic degradation

Pathogenesis: bacterial weaponry Excreted products

- 3. Extracellular polysaccharides: often required for pathogenesis.
 - ---a. may block recognition by the plant

---b. wilt mechanism (very viscous and can plug

vascular tissue).

---c. protective barrier from dessication, toxins, salts, pH changes, etc.

Oleander gall,

4. Bacterially-produced plant hormones

5. DNA (genetic transformation of plant): *Agrobacterium tumefaciens*

Examples of molecular weapons deployed by *Pseudomonas* and *Xanthomonas* on the leaf:

- 1. Ice nucleation
- 2. Toxins
- 3. Hrp pilus

Ice nucleation -Speeds ice formation/frost injury to leaves -InaZ protein (used in artificial snow) -Pseudomonas and Xanthomonas and Erwinia spp. -Plants can supercool to around -5°C; InaZ catalyzes ice formation as warm as -2°C. ≥1000 cells/g is enough to form an ice nucleus. -First GM microorganism was an Ice- strain of P. syringae to use in biocontrol (1985, Berkeley). -Control: competitive exclusion of surfaces by Ice strains (biocontrol; BlightBan)

Toxins (small non-protein molecules) -Toxins increase disease severity. How? -Contribute to systemic movement -increase lesion size -favor multiplication of pathogen in host

Well-studied in *P. syringae*, but other bacteria (and fungi)

produce them

Toxins (small non-protein molecules)

"Koch's Postulates" for toxin involvement in pathogenicity

- reproduce disease w/ purified toxin
- correlate toxin yield with pathogenicity
- produce toxin during active growth of pathogen *in planta*
- reduced virulence in tox- strains.

Fire Blight of Pear and Apple Causal agent: *Erwinia amylovora*

•E. amylovora native in N. America

•Hawthorne, mountain ash

•Apples, pears introduced by settlers

•Epidemic on pears in 1800-1900s

•Today pears still grown commercially west of Rockies due to bacterium but disease moved with pears

Fire Blight of Pear and Apple Causal agent: *Erwinia amylovora*

First reported in 1794 in New York.

First disease where Koch's postulates were fulfilled for plant bacterial pathogen.

-Thomas Burrill, at U. Illinois (1881)

-took 20 years of arguing to convince some scientists that bacteria could cause plant diseases.

First description of insect vector (honeybee) for bacterial disease.

Fire Blight of pear, apple: *Erwinia amylovora* EPS (extrapolysaccharide) is important virulence factor Hrp pilus present, along with effector proteins

Fire Blight of pear, apple: Erwinia amylovora

Disease development:

- 1. Epiphytic growth on stigmas
- 2. Movement down style to nectary
- 3. Movement to nectarthodes, colonization, entry
- 4. Rapid multiplication in intercellular spaces
- 5. Enter phloem, move to apical tissues
- 6. Enter xylem, move downward
- 7. Shoot blight, rootstock blight
- 8. Secondary infections from ooze: entry via stomates, lenticels, wind/hail and pruning wounds

Fire Blight of pear, apple: Erwinia amylovora

Control:

- 1. Resistant cultivars (Red Delicious) and rootstocks
- 2. Limit nitrogen
- 3. Prune all infections
- 4. Chemical controls
 - 1. Copper not very effective
 - 2. Oxytetracycline (antibiotic) no resistance but only ~50% reduction.
 - 3. Streptomycin: Old silver bullet. Now, antibiotic resistance.

5. Biological controls

Commercially available BlightBan (P. fluorescens A506); mix with antibiotics

Fire Blight of pear, apple: Erwinia amylovora

Pruning canker-infected branches in pear orchard

Application of antibiotics to a pear orchard

Antibiotic us	Strej se in the Unit	ptomycin r ed States in			
Сгор	Primary target	Antibiotic	No. states surveyed	Acreage treated (%)	Active ingredient used (lbs)
Apple	Erwinia	Oxytetra- cycline	2	5	2,900
	amylovora	Streptomycin	10	19	15,400
Peach, Nectarine	Xanthomonas arboricola	Oxytetra- cycline	3	8	6,900
Pear	Erwinia amylovora	Oxytetra- cycline	2	41	11,900
		Streptomycin	4	30	6,000

Antibiotic resistance in agriculture:

Streptomycin resistance:

1. Ribosomal mutation; streptomycin can't bind anymore (most common)

2. Inactivation by aminoglycoside phosphotransferase (encoded on plasmid of *E. amylovora*)

Tetracycline resistance: Rare so far, although certainly exists in nature. At least three different mechanisms:

- 1. Efflux pump
- 2. Ribosome mutatiom
- 3. Degrading enzyme

Fire blight epidemics are preceded by rain after warm periods during bloom: <u>predictable</u>

Models:

•Days above 15°C •Rain events

Current models:

•COUGARBLIGHT - Washington

•MARYBLYT - Oregon

•Others (Israel, Billings...) – location alters effect of rainfall so must be accounted for in model (humid/arid climates)

Mycorrhizal fungi (Fungi that form symbiotic associations with plant roots)

Fungi obtain nutrition from many sources:

-decomposition of organic substrates

-predation and parasitism

-mutualistic associations

Many soil fungi are **saprobes** with the enzymatic ability to digest organic substrates of varying degrees of complexity,

Mycorrhizal fungi are a major component of the soil microflora in many ecosystems, but usually have **limited saprophytic** abilities Mycorrhizal fungi are considered to have many important roles in natural and managed ecosystems:

-Fungi vary in their capacity to utilize resources and withstand adverse environmental conditions, e.g. pH.

-Therefore, mycorrhizal fungus diversity is thought to contribute to the resilience of ecosystems and competitiveness of plants.

-Two major types:

1. VAM (vesicular arbuscular mycorrhizae)

2. ECM (ectomycorrhizae)

Vesicular-arbuscular mycorrhizae

- VAM fungi belong to the Zygomycete order Glomales.
- They apparently colonized land with first vascular plants and may have evolved very slowly since then.
- These fungi only produce microscopic structures (no mushrooms).
- Only about 150 species of these fungi are known, yet they are capable of forming mycorrhizal associations with 70% of Angiosperms as well as many ferns and conifers.

Ectomycorrhizal associations (ECM):

-Mutualistic associations between Basidiomycetes and Gymnosperm or Angiosperm plants

-Consist of a soil mycelium system, linking mycorrhizal roots and storage or reproductive structures.

-Characterized by the presence of a mantle and Hartig net in the root epidermis or cortex, although these structures may not be well developed.

Ectomycorrhizal associations:

-Formed predominantly on the fine root tips of the host (fine root tips are more abundant in topsoil layers containing humus, than in underlying layers of mineral soil)

-Make a significant contribution to the biomass of forest ecosystems

-Widely distributed through the soil and make a large contribution to nutrient uptake and cycling in many ecosystems.

Pinus radiata and Amanita muscaria ECM grown under sterile conditions. This association has highly branched short roots with many root tips (arrows).

Ectomycorrhizal associations (ECM):

Hyphae penetrate between host cells and branch to form a labyrinthine structure called the Hartig net.

Angiosperms with ECM usually have a **one cell layer Hartig net** which is confined to the epidermis; structural characteristics of host roots (e.g. hypodermal layer)are thought to restrict ECM fungus hyphae to the epidermis in most Angiosperms.

In gymnosperms, Hartig net hyphae extend deep into the cortex. Hyphal penetration in gymnosperms may also be stopped by innercortex wall features in some cases.

Ouch!!! Host responses to this invasion may include polyphenol production in cells, phenylpropanoid accumulation and the deposition of secondary metabolites in walls.

Hartig net and mantle of ECM fungi

Cross section of *Pinus strobus* (White pine) ECM short root with thick mantle (M) and Hartig net hyphae (arrows) have enveloped several layers of cortex cells.

-short mycorrhizal lateral roots (called $\ensuremath{\mathsf{short}}\xspace$ roots) supported by a network of long roots.

-short roots grow much more slowly than long roots to allow ECM fungitime to form associations (mycorrhizae have difficulty colonizing more rapidly growing roots).

-short roots lack a periderm layer.

Early stage of colonization of pine short root by *Pisolithus tinctorius*. Hyphae (arrows) have contacted the root and are starting to proliferate on its surface near the apex (A).

SEM image showing the next stage of pine root colonization by *Pisolithus tinctorius*. Mantle hyphae (arrows) have formed a dense covering on the root surface (arrows).

9

Mycorrhizal fungi produce a hyphal network in soils.

-Individual strands of hyphae and/or bundles of hyphae called mycelial strands.

-Some ECM fungi can produce rhizomorphs, which contain sclerotia, which are resistant storage structures.

Soil hyphae:

-acquire nutrients and re-allocate resources for reproduction or mycorrhizal exchange -function as **propagules** to allow survival and spread of the fungus.

Unlike VAM associations, the ECM fungal associations can produce fungal fruiting bodies (mushrooms).

Laccaria fraterna fruiting under one-year old Eucalyptus globulus.

Fruit bodies of the ECM fungus Laccaria produced under an inoculated eucalyptus seedling.

To what extent to belowground microbial associations drive aboveground community structure?

Spotted knapweed, Centaurea maculosa

Introduced from Eastern Europe in the late 1800s in a load of hay; it has spread at a rate of about 27% every year since being introduced

In a century, spread from the PNW to the Atlantic coast

Most of Central and Eastern US spread occurred in last 15 years

Why is it such a successful invader?

Multibarreled approach to chemical warfare:

Foliage: cnicin Roots: polyacetylenes, catechins

Spotted knapweed is also potentially allelopathic: • Polyacetylenes in roots: phytotoxic • Catechin in roots: phytotoxic

- Non-chemical, reproductive success: Hundreds of seeds per seedhead Tumbleweed-like when dry

Host responses evident (root swelling, walling off) but not clearly pathogenic

Did fungi permit colonization of land by plants?

	Biological symbioses								
Effect on X	Effect on Y	Type of interaction							
0	0	Neutralism (extremely unlikely; impossible to prove							
-	0	Amensalism (usually involves toxin production)							
+	0	Commensalism (hard to judge - might miss a trait)							
+	+	Mutualism							
•	-	Parasitism							
para	sitism	mutualism							
		The symbiotic continuum							

isolates ± stre Isolates	ess	owth rates (m		
		r medium	1× PDA medium	
	-Salt	+Salt	-Salt	+Salt
FcRed1 Fc18	1.36+0.09 1.14+0.11	1.08+0.25 1.70+0.45	1.48+0.13 1.74+0.22	1.26+0.15
		$1 \times PDA$	medium	
	$25^{\circ}C$	$30^{\circ}C$	37°C	$40^{\circ}C$
Cp4666D CpMH206	25.33+2.29 28.78+2.49	28.00+1.58 40.89+5.25	6.89+1.38 8.67+2.24	NG NG
Salt stress: in	olates were gr	rth; PDA, potate own at 25 °C or isolates were g	n different med	dia±500 mM

Table 4 Effect of symbiosis on plant onnely's concentrations	Treatment Without stress With heat stress	Panic grass Tomato Panic grass Tomato	NO DELETE STRATE TO A STRATE OF A STRATE OF
osmolyte concentrations	With heat stress	Panic grass Tomato	142±13.2" 263±24.7" 114±5.7 ^b 127±34.7"
sis on plant o	t stress	Tomato	$178 \pm 8.7^{\rm b}$ $206 \pm 15.6^{\rm b}$
ect of symbio	Without	Panic grass	57±5.1* 102±7.2 ^b
Table 4 Eff	Treatment		NS

ньс-йй-снь	Table 5 Eff	fect of symbios	sis on RO:	S generatik	on in the p	resence or	
2 CI	Plant	Treatment	-Heat stress	+Heat	-Salt	*Salt	
Paraquat dichloride – common, general use	Panicgrass	NS	0/12	12/12	ND	ND	
herbicide (monocots and	Landone	s	0/12	0/12	ND	ND	
	Tomato	NS	0/12	11/12	0/12	10/12	
dicots)		s	0/12	0/12	0/12	1/12	
	Dunegrass	NS	ND	ND	1/12	11/12	
		8	ND	ND	0/12	1/12	
	Monocot (pa plants that w FcRed1 (that to nonsymbil stress (see to were excised number of le	as: ND, not det anic grass and were symbiotic i imparts heat i otic (NS) plan ext for details) d from N=3 p ieaf discs out o paraquat indic	d dunegras cally (S) co and salt to its were er and assay plants/treat of a total of	ss) and euc donized will olerance, re xposed to yed for ROS stment. The of 12 that	dicot (mod ith either C spectively) ±temperat S. Leaf dis e values in bleached	iel tomato) Cp4666D or compared ture or salt ks (N=12) odicate the	
Paraquat toxicity:		that in	teract	t with	O ₂ to	enerate bip form super roxyls)	
Paraquat resistance:	More ef Restrict			• • • • • •			

More than 400 still can't make via fungal sym	it on their			
Rusty Rodriguez ^{1,3,4} and R	egina Redman ^{1,3}			
Table 1. Symbol versus plant host		expression of	of Colletotrichu	um species
Fungal	Disease host ^a		Lifestyle expre	ssed
pathogen	10.02	host ^b	Disease stress ^c	Drought stress ^d
C. magna C. musae C. orbiculare C. acutatum C. gloeosporioides	Strawberry	Pepper Tomato Watermelon	Mutualism Mutualism Mutualism Commensalism Commensalism	
^a Species were plants. ^b Host plants th <i>Collectricham</i> spp ^c Symbiotic lift Lifestyles were du confer disease hos ^d Symbiotic lift Lifestyles were du confer drought tolo cessation of wateri	at are asymp x estyle expre- efined by the istance again sts (data fron estyle expre- efined by the erance based	tomatically of ssed after a a bility of of a Redman er ssed after a e ability of of on the length	colonized by the symptomatic o each Colletorric olletotrichum p al., 2001). symptomatic o each Colletotric of time before	e respective olonization. hum sp. to athogens of olonization. hum sp. to

Problems in fungi, too... molecular species designations do not address ecological functionality

- Curvularia protuberata (pathogen of monocots) -Isolate Cp4666D = mutualist in Dichanthelium lanuginosum, heat/drought tolerance
- Fusarium culmorum (pathogen of crop plants) -Isolate FcRed1 = mutualist in dunegrass and tomato (salt/drought tolerance)

Within-species phenotypic (lifestyle) plasticity:

-range from saprophyte to mutualist to parasite -expansion of geographic range (reservoirs)

How do bacteria and viruses play in?

Why haven't more plants evolved symbiotic stress tolerance?

Can plants adapt to stress without symbionts?