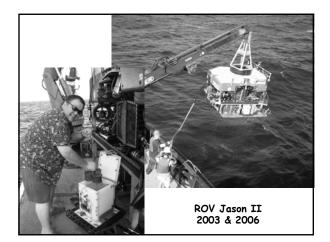
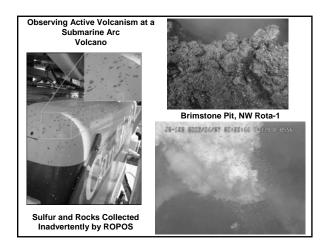
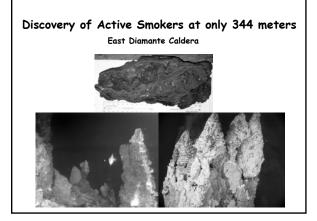

Extreme Spatial and Temporal Variability of Microbial Mat Communities From Mariana Island Arc Hydrothermal Vents Craig L. Moyer Biology Department

Western Washington University

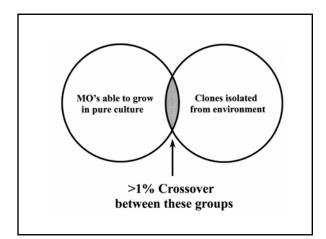


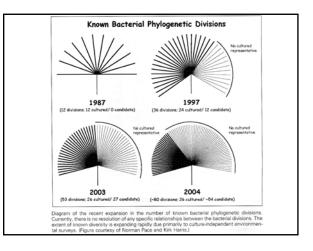




Submarine Ring of Fire Major Results/Observations

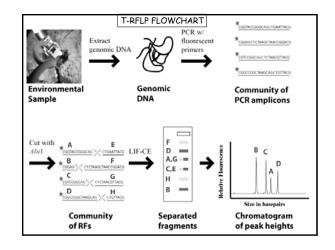
- First Observations of Deep Submarine Arc Volcanic Event
- Photosynthetic/Chemosynthetic Ecosystems Interaction
- Shallowest Massive Sulfide Formation at 344 m (220° C)
- Champagne Vent, 1600 meter site with intense CO₂ Venting – Bubbles of Liquid CO₂
- High Variability of Biological Communities among & between Volcanoes

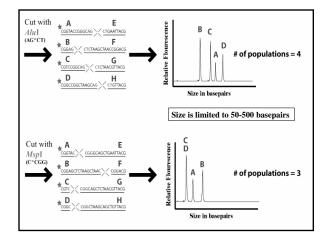


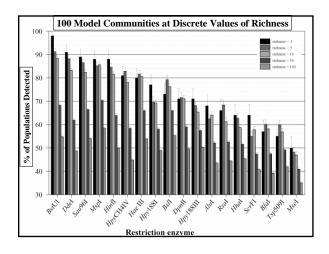

Table 1. Microbial mat samples (n=25) were collected
and analyzed using T-RFLP, Q-PCR, and then targeted
cloning & sequencing.

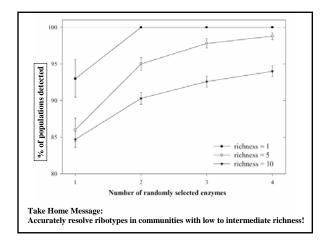
Year	Sample	Vent Site	Location	Spreading Center/ Arc Seamount	Latitude/Longitude	Sample Type	Sample Description	Depth (m)	Temp (°C)
2003	j2-42-1W	Fryer Site	Backare	SMB5C [†]	12*57.190 N 143*37.125 E	Push Core	Yellow/White mat	2860	77
2003	12-42-2W	Fryer Site	Backare	SMBSC [*]	12*57.190 N 143*37.125 E	Push Core	Yellow/Green mat	2860	77
2004	R782-65	Shimmering Vent	Volcanic are	NW Rota-1	14°36.072 N 144°46.530 E	Suction Sample	Orange mat	516	15
2004	R782-b7	Shrimp Mound	Volcanic arc	NW Rota-1	14*36.072 N 144*46.530 E	Suction Sample	Yellow mat	518	15
	R783-b56	lceberg	Volcanic are	NW Rota-1	14°36.048 N 144'46.578 E	Suction Sample	White mat	529	58
	R786-b567	Fault Shrimp	Volcanic arc	NW Rota-1	14'36.036 N 144'46.644 E	Suction Sample	White mat	584	20
2004	R788-b7	Mat City	Volcanic arc	E Diamante	15'56.322 N 145'40.518 E	Suction Sample	White mat	206	ambient.
2004	R788-b5	Five Towers	Volcanic arc	E Diamante	15'56.556 N 145'40.884 E	Suction Sample	Orange mat	344	220
2004	8788-CC	Five Towers	Volcanic are	E Diamante	15*56-556 N 145*40.884 E	Chimney Chunks	Multi-colored rocks	344	220
2004	R789-b5	Egg Drop Soup	Volcanic arc	Maug Crater	20*01.206 N 145*13.308 E	Suction Sample	Orange mat	149	ambient
	R790-b56	Cave Vent	Volcanic are	Maug Crater	20*01.404 N 145*13.356 E	Suction Sample	Orange mat	145	28
	R791-656	Bacto Balls	Volcanic are	NW Elfuku	21*29.328 N 144*02.436 E	Suction Sample	Fe mat	1716	ambient
2004	R791-b7	Yellow Top	Volcanic arc	NW Elfuku	21*29.304 N 144*02.424 E	Suction Sample	Fe mat	1674	~6-8
2004	8792-657	Champagne	Volcanic are	NW Elfuku	21*29-256 N 144*02.508 E	Suction Sample	White mat	1608	72-103
2004	8792-CC	Champagne	Volcanic arc	NW Elfuku	21'29.256 N 144'02.508 E	Chimney Chunks	White rocks	1608	72-103
2004	R793-b1	Yellow Cone	Volcanic are	NW Elfuku	21*29.292 N 144*02.526 E	Suction Sample	Fe mat	1587	11
	R793-657	Yellow Top	Volcanic arc	NW Elfuku	21*29.310 N 144*02.424 E	Suction Sample	Fe mat	1678	~6-8
	R795-b56	Fish Spa	Volcanic are	Dalkoku	21°39.476 N 144°11.532 E	Suction Sample	White sediment	390	ambient
2006	(2-184-W	Fe-Mats	Volcanic are	Seamount X	13°15.098 N 144°01.069 E	Suction Sample	Fe mat	1305	nd
2006	j2-184-8	Snail Mat	Volcanic arc	Seamount X	nd	Suction Sample	white mat	1188	nd
2006	(2-190-W	Fe-Mounds	Volcanic arc	Esmeraida Bank	14*57.364 N 145*14.478 E	Suction Sample	Fe sediment	295	40
2006	j2-190-CC	Fe-Mounds	Volcanic arc	Esmeralda Bank	14*57.364 N 145*14.478 E	Chimney Chunks	Fe crust	291	40
2006	(2-191-W	Iceberg	Volcanic arc	NW Rota-1	14*36.052 N 144*46.579 E	Suction Sample	White mat	530	25
2006	2-197-W	Bubble Bath	Volcanic arc	Daikoku	21*19:505 N 144*11.488 E	Suction Sample	white mat	411	52
2006	J2-197-8	Fish Spa	Volcanic arc	Daikoku	21*19-484 N 144*11.585 E	Suction Sample	Brown sediment	390	ambient

Importance of a Molecular Microbiological Approach

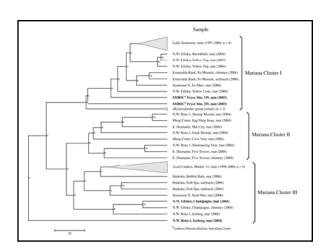

- Traditional culturing techniques isolate ~1% of the total bacteria in marine ecosystems, thereby severely underestimating diversity and community structure.
- Because nutrient-rich culture media have been historically used during enrichment procedures, bacteria which may be dominant in natural communities are selected against in favor of copiotrophic (weedy) bacteria.
- SSU rRNAs and their respective genes are excellent descriptors of microbial taxa based on phylogeny.

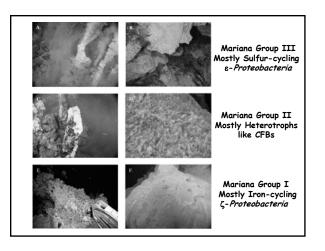


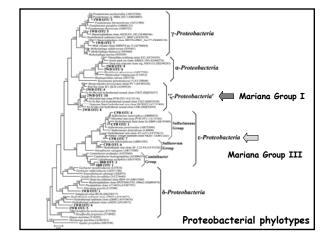


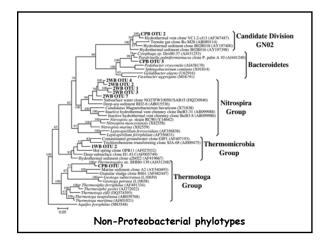

Why ribosomal RNAs?

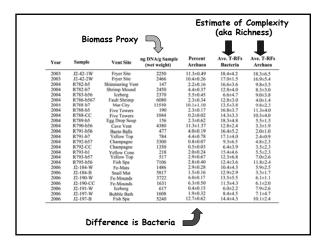
- Found among all living organisms (for 3.8 of the last 4.5 billion years). Integral part of protein synthesis machinery.
- Cell component analyses provide culture-independent means of investigating questions in microbial ecology (lack of morphology).
- rRNAs offer a type of sequence information that makes them excellent descriptors of an organism's evolutionary history.
- No detectable horizontal gene transfer, especially important for *Bacteria* and *Archaea*.
- Large and growing database; RDP contains >480K SSU rRNA genes.

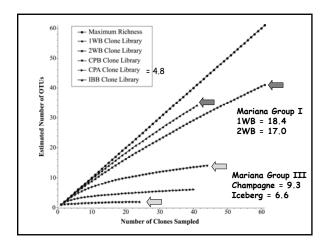




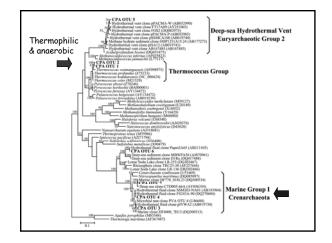


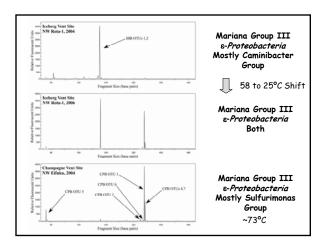


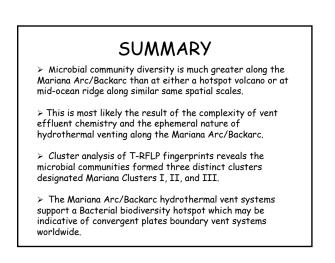

Integrating Molecular Methods Terminal-restriction fragment length polymorphisms (T-RFLPs) were used to track populations based on ribotypes (in lots of samples). A/B Q-PCR needed to determine domain level proportions. Clone library and phylogenetic analyses needed to identify these phylotypes within the community (in few samples).

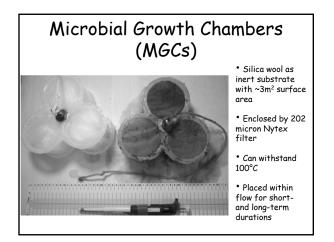


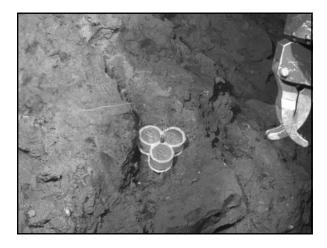


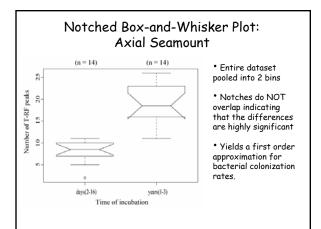


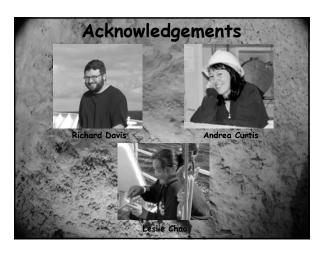


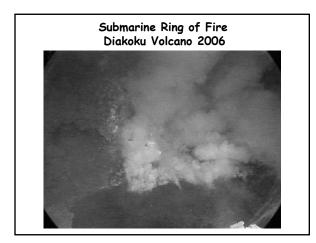


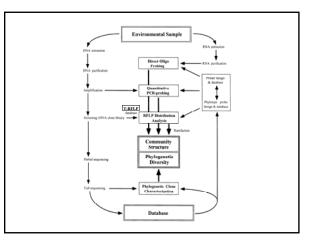


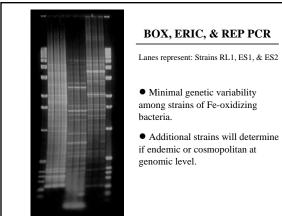









Quote: Baas Becking (1934)


(Referring to bacteria) - "everything is everywhere: but the milieu selects ... in nature and in the laboratory".

