Microbes and Mineral Cycling

Biogeochemical cycles on a
global scale
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Fig 22. A comparison between C, S and N oxidation/reductions. The most reduced and the
most oxidized compounds of the C, 5 and N cycles are arranged in pairs, separated by a distance
which represents an 8 ¢ difference between the extremes. Given vertically are the &, for the
oxidation, by Oy, of the reduced form. There is a decreasing energy yield through the series C,
5 to N which is represented by the vertical distance between the oxidized and the reduced forms.
The location of the lines relative to each other is only approximately correct and is designed to
illustrate the decrease in reducing potential through the series H;, CH,, H,;5 to NH, and the
increase in oxidizing potential through the series CO,, 505, NO3 10 O,
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Balance between biosynthesis and biodegradation

Cycling of carbon
is dependent on
biodegradation and
photosynthesis.
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Fig. 23. The microbial carbon cycle. The role of sulfate in the oxidation of methane is largely
hypothetical.

The carbon cycle, closely connected with oxygen cycle
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Most carbon in carbonate rocks & sediments

Table 19.3 Major carbon reservoirs on Earth

Carbon Percent of total

Reservoir (gigatons)® carbon on Earth
Oceans 38 % 10° (=95% 0.05

is inorganic C)
Rocks and sediments 75 % 10° (>80% =995

is inorganic C)
Terrestrial biosphere 2 % 10° 0.003
Aquatic biosphere 1-2 0.000002
Fossil fuels 42 % 10° 0.006
Methane hydrates 104 0.014
Atmosphere 720 0.005

 One gigaton is 10” tons. Data adapted from Science 290:291-295 (2000).
" Much of the organic carbon is in prokaryotic cells.

(€H;0), Redox states
Siani
ganic matter fOI" the
Oxygenit photosynthesis carbon CyC'e
Asrobic
Chemolithotrophy
Methanotrophy
& Oxic
—ﬂ{/ 2 Anoxie
Acetogenesis "";"':"‘:
Sempunds respiration
Anoxygeni and
and acetate) 'h:::’;'r;.ﬂ' fermentation

Organic matter
(CH,0),

Cgania C seurce (%)
1w Py
Iwr
i e
E,, | -
AN RO
o \\ T A
B = o
Incrganic C soure (%)
FIGURE 1 Chemomophic metabolc versaodey what is polensially peesent in deep-sea vent babitaty Growth of
o o :
carhoa () souroes sod an variable povoent reireements. The dardesed
4 the oblipss esd- The infinite pradatioss
fmm obligaiory metaboliam thmugh facvitative and cventally to the misotphic metsbolism are alus
depicied. The danbed | S g

bowndary. Mot shews in this ligee & the adStions] potential for photoarophic mesabolism ot deep-sea
Bydeothersal vents. {5e¢ beat for more detsils on metsbolic versaility)




Fate of major biomolecules

| Carbon is converted to CO,.
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Take Home Message

e The oxygen and carbon cycles are interconnected
through the complementary activities of
autotrophic and heterotrophic organisms.

* Microbial decomposition is the single largest
source of CO, released to the atmosphere.

Schematic pathways for Carbon fixation in chemolithotrophs
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Figure 9.10. The Calvin cycle. Ru-Pp. Ribulose-l 5-bisphosphate; PGA.
3 5 de-3-phosphate: DAP, dilvd

.pl;ospl:atc? F-Py. frunlm-i.’- isphosph F-6-F.  fructose-fp
E-4-P, erythrose-4 Su-Py, 1.7-bi SulP,
7- Xu-5-F, lual 5 Ri-5P, ribose-5-




Calvin Cycle  groes

C=0

N
Ny |

ool |

H—C—OH

H—C—08
|
ano®

ol
Bibalos-15-Haphophute ]
HO—C—1
|
o

) o of which e the
Ribvudone-S-phosphiate " oo ining osactions of the cycie.

Srctergeang micteiar eass ey

|, 12 repemersts riwdoe 1 F-haphophate. |
Sugar eamngrmests snmig 1 Bisphophoglyoenie
NADF

A Phonphoglyceite

aTe

ysenabishyde bphonphane |
@

Figure 1.1 Calvin cycle
This €0, s

prcde o ot i e tha
cyanabacteria, and most other sssotmph. L.

Reverse TCA in 6SBs (e.g., Chlorobium),
H,-oxers & some SRBs
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Hydroxyproprionate in GNBs (e.g., Chloroflexus)
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Anaplerotic reactions regenerate intermediates for TCA
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The "Adjacent Possible” Concept

* Microbial evolution exhibits signs of increased
biocomplexity over time. Might this be an emergent
property of evolution?

» The TCA is an example of two less complex (simple)
pathways running anaerobically. Once oxygen was
present these preadapations only needed to be
tweeked ever so slightly (e.g., the a-KG DH bridge)
to make aerobic respiration possible.




