Microbes and Mineral Cycling

Biogeochemical cycles on a global scale

Figure 3.6 Seasonal fluctuations in the concentration of atmospheric CO_2 (1981–1984), shown as a function of 10° latitudinal belts (Conway et al. 1988). Note the smaller amplitude of the fluctuations in the southern hemisphere, reaching peak concentrations during northern hemisphere minima.

Fig. 22. A comparison between C, S and N oxidation/reductions. The most reduced and the most oxidized compounds of the C, S and N cycles are arranged in pairs, separated by a distance which represents an 8 e^- difference between the extremes. Given vertically are the G'_{\circ} for the oxidation, by O₂, of the reduced form. There is a decreasing energy yield through the series C, S to N which is represented by the vertical distance between the oxidized and the reduced forms. The location of the lines relative to each other is only approximately correct and is designed to illustrate the decrease in reducing potential through the series H₂, CH₄, H₂S to NH₃ and the increase in oxidizing potential through the series CO₂, SO₄²⁻, NO₃⁻ to O₂.

Balance between biosynthesis and biodegradation

Fig. 23. The microbial carbon cycle. The role of sulfate in the oxidation of methane is largely hypothetical.

The carbon cycle, closely connected with oxygen cycle

Most carbon in carbonate rocks & sediments

Table 19.3Major carbon reservoirs on Earth

Reservoir	Carbon (gigatons) ^a	Percent of total carbon on Earth
Oceans	$38 \times 10^3 (>95\%$	0.05
	is inorganic C)	
Rocks and sediments	$75 \times 10^{6} (>80\%)$	$> 99.5^{b}$
	is inorganic C)	
Terrestrial biosphere	2×10^{3}	0.003
Aquatic biosphere	1–2	0.000002
Fossil fuels	4.2×10^{3}	0.006
Methane hydrates	10^{4}	0.014
Atmosphere	720	0.005

^{*a*} One gigaton is 10⁹ tons. Data adapted from *Science* 290:291–295 (2000).

^{*b*} Much of the organic carbon is in prokaryotic cells.

FIGURE 1 Chemotrophic metabolic versatility that is potentially present in deep-sea vent habitats. Growth of microorganisms at the expense of either inorganic or organic electron (e⁻) donors and inorganic or organic carbon (C) sources is expressed as variable percentages of total energy and C requirements. The darkened corners depict the characteristics of the obligate end-member metabolic pathways. The infinite gradations from obligatory metabolism through facultative and eventually to the mixotrophic metabolism are also depicted. The dashed line arbitrarily separates the lithomixotrophs from the organomixotrophs at the 50% boundary. Not shown in this figure is the additional potential for phototrophic metabolism at deep-sea hydrothermal vents. (See text for more details on metabolic versatility.)

Fate of major biomolecules

Take Home Message

• The oxygen and carbon cycles are interconnected through the complementary activities of autotrophic and heterotrophic organisms.

• Microbial decomposition is the single largest source of CO_2 released to the atmosphere.

Schematic pathways for Carbon fixation in chemolithotrophs

FIGURE 2 Four selected pathways for CO₂ assimilation in chemolithotrophic bacteria. Not shown in this diagram are the noncyclic acetyl-CoA pathway, the reduction of CO₂ to methane, and CO₂ assimilation via anaplerotic reactions (see text for more details). Clockwise from upper left: Calvin cycle, serine pathway, reductive tricarboxylic acid cycle and ribulose monophosphate pathway. Abbreviations include: RuBP=ribulose bisphosphate, 3-PGA=3-phosphoglyceric acid, Succ-CoA=succinyl-CoA, α KG= α -ketoglutarate, RuMP=ribulose monophosphate, and DAP = dihydroxacetone phosphate.

Figure 9.10. The Calvin cycle. $Ru-P_2$, Ribulose-1,5-bisphosphate; PGA, 3-phosphoglycerate; GAP, glyceraldehyde-3-phosphate; DAP, dihydroxyacetone phosphate; F-P₂, fructose-1,6-bisphosphate; F-6-P, fructose-6-phosphate; E-4-P, erythrose-4-phosphate; Su-P₂, sedoheptulose-1,7-bisphosphate; Su-7-P, sedoheptulose-7-phosphate; Xu-5-P, xylulose-5-phosphate; Ri-5-P, ribulose-5-phosphate.

Calvin Cycle

Reverse TCA in GSBs (e.g., Chlorobium), H_2 -oxers & some SRBs

RuMP Pathway: Type I Methylotrophs

Serine Pathway: Type II Methylotrophs

Hydroxyproprionate in GNBs (e.g., Chloroflexus)

Anaplerotic reactions regenerate intermediates for TCA

Figure 10.9 Branched TCA cycle

During anaerobic conditions in some organisms, the TCA cycle operates in a branched mode (right) to provide for the biosynthetic intermediates needed by the cell (oxaloacetate, α -keto-glutarate). The waste product, succinate is generated from malate by the malate dehydrogenase (1) operating in the

reverse direction, plus a distinct fumarase enzyme (6) and fumarate reductase (7). Synthesis of three of the TCA cycle enzymes—succinate dehydrogenase (3), α -ketoglutarate dehydrogenase (4), and succinyl-CoA synthetase (5)—is suppressed. OAA is formed from PEP and CO₂ by PEP carboxylase (8).

The "Adjacent Possible" Concept

• Microbial evolution exhibits signs of increased biocomplexity over time. Might this be an emergent property of evolution?

• The TCA is an example of two less complex (simple) pathways running anaerobically. Once oxygen was present these preadapations only needed to be tweeked ever so slightly (e.g., the a-KG DH bridge) to make aerobic respiration possible.