Microbes and Mineral Cycling

Biogeochemical cycles on a
global scale
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Figure 3.6 Seasonal fluctuations in the concentration of atmospheric CO, (1981-1984),
shown as a function of 10° latitudinal belts (Conway et al. 1988). Note the smaller amplitude

of the fluctuations in the southern hemisphere, reaching peak concentrations during northern
hemisphere minima.



Carbon Dioxide Variations
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Fig. 22. A comparison between C, S and N oxidation/reductions. The most reduced and the
most oxidized compounds of the C, S and N cycles are arranged in pairs, separated by a distance
which represents an 8 e~ difference between the extremes. Given vertically are the G| for the
oxidation, by O,, of the reduced form. There is a decreasing energy yield through the series C,
S to N which is represented by the vertical distance between the oxidized and the reduced forms.
The location of the lines relative to each other is only approximately correct and is designed to
illustrate the decrease in reducing potential through the series H,, CH,, H,S to NH; and the
increase in oxidizing potential through the series CO,, SO2~, NOj3 to O,.



Microbial Metabolic Menu
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Balance between biosynthesis and biodegradation
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Methanogenesis

Anoxygenic photosynthesis
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Blue - green photosynthesis
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Fig. 23. The microbial carbon cycle. The role of sulfate in the oxidation of methane 1s largely
hypothetical.



The carbon cycle, closely connected with oxygen cycle
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Table 19.3 Major carbon reservoirs on Earth

Carbon Percent of total

Reservoir (gigatons)“ carbon on Earth
Oceans 38 X 10° (>95% 0.05

is inorganic C)
Rocks and sediments 75 X 10° (>80% >99.5°

is inorganic C)
Terrestrial biosphere 2 X 10° 0.003
Aquatic biosphere 1-2 0.000002
Fossil fuels 42 x 10° 0.006
Methane hydrates 10* 0.014
Atmosphere 720 0.005

7 One gigaton is 10” tons. Data adapted from Science 290:291-295 (2000).
b Much of the organic carbon is in prokaryotic cells.
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Chemotrophic metabolic versatility that is potentially present in deep-sea vent habitats. Growth of
microorganisms at the expense of either inorganic or organic electron (e~) donors and inorganic or organic
carbon (C) sources is expressed as variable percentages of total energy and C requirements. The darkened
corners depict the characteristics of the obligate end-member metabolic pathways. The infinite gradations
from obligatory metabolism through facultative and eventually to the mixotrophic metabolism are also
depicted. The dashed line arbitrarily separates the lithomixotrophs from the organomixotrophs at the 50%
boundary. Not shown in this figure is the additional potential for phototrophic metabolism at deep-sea
hydrothermal vents. (See text for more details on metabolic versatility.)



Fate of major biomolecules
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Take Home Message

e The oxygen and carbon cycles are interconnected
through the complementary activities of
autotrophic and heterotrophic organisms.

e Microbial decomposition is the single largest
source of CO, released to the atmosphere.



Schematic pathways for Carbon fixation in chemolithotrophs
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FIGURE 2 Four selected pathways for CO, assimilation in chemolithotrophic bacteria. Not shown in this diagram are
the noncyclic acetyl-CoA pathway, the reduction of CO, to methane, and CO, assimilation via anaplerotic
reactions (see text for more details). Clockwise from upper left: Calvin cycle, serine pathway, reductive
tricarboxylic acid cycle and ribulose monophosphate pathway. Abbreviations include: RuBP=ribulose
bisphosphate, 3-PGA=3-phosphoglyceric acid, Succ-CoA=succinyl-CoA, aKG=a-ketoglutarate,
RuMP=ribulose monophosphate, and DAP = dihydroxacetone phosphate.
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Figure 9.10. The Calvin cycle. Ru-P,, Ribulose-1,5-bisphosphate; PGA,
3-phosphoglycerate; GAP, glyceraldehyde-3-phosphate; DAP, dihydroxyacetone
phosphate; F-P,, fructose-1,6-bisphosphate; F-6-P, fructose-6-phosphate;
E-4-P, erythrose-4-phosphate; Su-P,, sedoheptulose-1,7-bisphosphate; Su-7-P,
sedoheptulose-7-phosphate; Xu-5-P, xylulose-3-phosphate; Ri-5-P, ribose-5-
phosphate; Ru-5-P, ribulose-5-phosphate.



Calvin Cycle

Figure 10.1 Calvin cycle
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Reverse TCA in 6SBs (e.g., Chlorobium),
H,-oxers & some SRBs
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Reductive (aka reverse) TCA cycle
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RUuMP Pathway: Type I Methylotrophs
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Serine Pathway: Type IT Methylotrophs
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Hydroxyproprionate in GNBs (e.g., Chloroflexus)
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Anaplerotic reactions regenerate intermediates for TCA
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reverse direction, plus a distinct fumarase enzyme (6) and

During anaerobic conditions in some organisms, the TCA cycle
operates in a branched mode (right) to provide for the biosyn-
thetic intermediates needed by the cell (oxaloacetate, c-keto-
glutarate). The waste product, succinate is generated from
malate by the malate dehydrogenase (1) operating in the

fumarate reductase (7). Synthesis of three of the TCA cycle
enzymes—succinate dehydrogenase (3), a-ketoglutarate dehy-
drogenase (4), and succinyl-CoA synthetase (5)—is suppressed.
OAA is formed from PEP and CO, by PEP carboxylase (8).



The "Adjacent Possible” Concept

e Microbial evolution exhibits signs of increased
biocomplexity over time. Might this be an emergent
property of evolution?

e The TCA is an example of two less complex (simple)
pathways running anaerobically. Once oxygen was
present these preadapations only needed to be
tweeked ever so slightly (e.g., the a-KG DH bridge)
to make aerobic respiration possible.



