Bacterial Cell-Cell Communication,

or

Quorum Sensing

Previous paradigm: Bacteria are asocial creatures, living a unicellular existence, responding only to chemical and physical signals from the environment.

"It is perfectly possible to imagine a rather boring universe without sex, without hormones, and without nervous systems; a universe peopled only by individual cells – reproducing *ad infinitum*. This universe, in fact, exists. It is the one formed by a culture of bacteria."

--Dr. Fancois Jacob, 1973

Small diffusible molecules mediate bacterial communication

In the absence of communication, each cell has to <u>individually</u> sense and respond to environmental cues

Bacterial signaling and quorum sensing allows bacteria to act similarly to multicellular organisms

What does bacterial cell-cell signaling accomplish for the population?

-Coordination of behavior -Quick response to environmental stimuli

Autoinduction: signal stimulates production of more signal

© 2006 Pearson Prentice Hall, Inc.

What behaviors are coordinated?

- 1. Adaptation to environmental conditions
 - a. Availability of nutrients
 - b. Stress (harsh conditions, toxic compounds)
 - c. Proximity of host
- 2. Defense against other microorganisms
- 3. Expression of virulence genes during host infection

a. First, escape host immune response. Avoid wasting expensive resources on virulence traits, unless they will result in successful infection
b. Next, overwhelm host all at once by coordinated expression of virulence genes

4. Coordination of symbiosis: ensure benefit to kin, not cheaters

Bacterial mat in Yellowstone

Xylella fastidiosa in xylem

"If the bacteria had acted as independent assasins rather than as an army the immune system would have wiped them out" ...Dr. Bonnie Bassler

Pseudomonas aeruginosa in lungs ~ 5% of genome responds to homoserine lactone signal (350 genes)

"A multitude of bacteria are stronger than a few, thus by union are able overcome obstacles too great for few."

... Dr. Erwin F. Smith, 1905 (Father of Plant Bacteriology)

This doesn't sound like an antisocial organism, does it? In fact, it sounds almost... multicellular!

(r = 1 in multicellular and clonal populations; does Hamilton's rule apply?)

Construction of a biofilm. Free (planktonic) bacteria assemble on a surface (**left**). Cell-to-cell communication then induces the formation of multicellular pillars and columns (**right**).

How do HSLs affect bacterial biofilms?

-help ammonia oxidizing bacteria recover more quickly from ammonia starvation

-allow thicker, denser biofilms of *Pseudomonas aeruginosa* (pathogen infecting lungs of cystic fibrosis patients)

-make bacterial populations more resistant to bacteriostatic (detergents) and bactericidal (antibiotics) substances – physical barrier

-trigger antibiotic production by plant pathogenic bacteria to exclude competitor species as biofilm community degrades host tissues and free up nutrients

Are there more functions? Remember: emergent properties...

We know that HSL signaling is important in mediating some hostbacterial interactions... but what other functions might HSLs have?

One cannot always predict the properties (utility) of a biological system just by describing it *in vitro*.

Properties emerge in context of environment, population, etc.: "emergent properties"

Cannot always be predicted through logical reasoning because we don't fully understand the ecology

For example, we now know that there is <u>cross-species and</u> <u>cross-genus</u> signaling by HSLs... what importance might this have ecologically?

A well-known example of an emergent property:

Hemoglobin mutation = morphologically deformed blood cells (sickle cell anemia) Hemoglobin mutation = protection against malaria

How important is quorum sensing to bacteria?

Pseudomonas aeruginosa: (*luxI, rhlI* mutants examined)

6% of ~6,000 genes are induced or repressed by the quorum sensing signals in this species.

Escherichia coli (*luxS* mutant examined)

5.6% of the genome (242 of 4,290 genes) is induced or repressed significantly by the *luxS* product AI-2

Functions of genes involved:

cell division DNA processing morphological changes metabolism of small molecules onset of stationary phase signal transduction genes

What phenotypes are regulated by quorum sensing via homoserine lactone signals?

Bioluminescence

(Vibrio fischeri, V. harveyi)

Antibiotic biosynthesis (*Erwinia. caratovora* subs. carotovora, Streptomyces griseus, Pseudomonas fluorescens, P. aureofaciens)

Pathogenicity (E. carotovora, Pantoea stewartii, Pseudomonas aeruginosa, Ralstonia solanacearum, Xanthomonas campestris)

Plasmid conjugal transfer (Agrobacterium tumefaciens)

Competence

(Bacillus subtilis)

Biofilm formation

(P. aeruginosa)

Symbiosis

(Rhizobium etli, R. leguminosarum bv. viciae)

Very important in plant and human disease, integral in many eukaryotic-host associations.

Phenotypes regulated by homoserine lactone signals often have to do with interations OUTSIDE the bacterial cell

Bioluminescence	(Vibrio fischeri, V. harveyi)
Antibiotic biosynthesis	(Erwinia. caratovora subs. carotovora , Streptomyces griseus, Pseudomonas fluorescens, P. aureofaciens)
Pathogenicity	(E. carotovora, Pantoea stewartii, Pseudomonas aeruginosa, Ralstonia solanacearum, Xanthomonas campestris)
Plasmid conjugal transfer	(Agrobacterium tumefaciens)
Competence	(Bacillus subtilis)
Biofilm formation	(P. aeruginosa)
Symbiosis	(Rhizobium etli, R. leguminosarum bv. viciae)

Very important in plant and human disease, integral in many eukaryotic-host associations: bolded species rely on HSL-mediated phenotypes in interactions with eukaryotic host. The focus for the past decade has been on homoserine lactones in bacterial communication... are there other signals?

Not all bacterial cell-cell signals are homoserine lactones!

Quorum sensing signal diversity:

homoserine lactones: usually >1 per species (e.g. V. fischeri, Pseudomonas aeruginosa)

Generated by LuxI homologs peptide pheromones (e.g. Gram+ bacteria such as *Bacillus subtilis*)

polyketides (e.g. Pseudomonas fluorescens)

quinolones (e.g. Pseudomonas aeruginosa)

furanones (e.g. V. harveyi)

mixture of amino acids (Myxococcus xanthus)

hydroxypalmitic acid methyl ester (Ralstonia solanacearum)

subinhibitory concentrations of antibiotics!!

Other synthetic pathways

Table 1

Phenotypic effects of SI antibiotics.				
Antibiotic and action	Class	Concentration	Responsive genes	Method and Ref
B. subtilis Protein synthesis — chloramphenicol		0.4 imes MIC	+ Transport/binding + Ribosomal proteins - Metabolism of AA ^a s	Microarray [13]
Gentamicin Erythromycin	Amino-glycoside Macrolide	$\begin{array}{l} 0.4 \times \text{MIC} \\ 0.5 \times \text{MIC} \end{array}$	 + Metabolism of carbohydrates – Transport/binding +/– Transport/binding – Metabolism of carbohydrates +/– Ribosomal proteins – Metabolism of AAs 	Microarray [13] Microarray [13]
Cell wall biosynthesis inhibitor — bacitracin		$0.2 \times \text{MIC}$	 Purine and pyrimidine biosynthesis + sigB (general stress) and sigM (ECF) regulon 	Microarray [20]
Streptococcus pneumoniae Protein synthesis inhibitor — puromycin	-	Sub lethal	 + Heat shock AA biosynthesis, AAR^bs + Ribosomal proteins (weakly) - Buring purposide biographesia 	Microarray [24]
Protein synthesis inhibitor - tetracycline	Tetracycline	Sub lethal	 AA biosynthesis, AARs + Ribosomal proteins (weakly) + Purine nucleotide biosynthesis 	Microarray [24]
Protein synthesis inhibitor - chloramphenicol		Sub lethal	 AA biosynthesis, AARs + Ribosomal proteins (weakly) + Purine nucleotide biosynthesis 	Microarray [24]
Protein synthesis inhibitor - erythromycin	Macrolide	Sub lethal	 AA biosynthesis, AARs + Ribosomal proteins (weakly) + Purine nucleotide biosynthesis 	Microarray [24]

Table 1

Phenotypic effects of SI ant	Phenotypic effects of SI antibiotics.			
Antibiotic and action	Class	Concentration	Responsive genes	Method and Ref
E coli				
Bac7(1-35)	Antimicrobial peptide	$0.25 \times MIC$	 Maltose, ribose transport system + Osmotic stress (uptake of osmoprotectant glycine, betaine and proline) + hns 	Macroarray [17]
Protein synthesis inhibitor - 4-azaleucine		Sub lethal	+ Prophage genes + Heat shock + AA biosynthesis + Bibosomal proteins	Microarray [23]
Protein synthesis inhibitor -		Sub lethal	+ AA biosynthesis	Microarray [23]
Protein synthesis inhibitor		Sub lethal	 + Ribosomal proteins + Transporters - Carbon metabolism - rpoS regulon 	Microarray [23]
Protein synthesis inhibitor - puromycin		Sub lethal	+ ribosomal proteins – rpoS regulon – Carbon metabolism – Iron metabolism	Microarray [23]
E. coli 0157 Gyrase inhibitor — norfloxacin	Fluoroquinolone	0.8 × MIC	 + Prophage genes - LEE genes - Membrane protein genes - Protein biosynthesis genes - AA biosynthesis genes 	Microarray [14]
Table 1 (Continued)			···· · ···· · · · · · · · · · · · · ·	
Antibiotic and action	Class	Concentration	Responsive genes	Method and Ref
S. typhimurium Cell membrane biosynthesis inhibitor — polymyxin	Cationic antimicrobial peptide	Sub lethal, 30 min treatment	 + rpoS regulon + phoP regulon + Exopolysaccharide biosynthesis genes + AMP resistance genes - Invasion genes - Flagellar genes 	2DGE and microarray [21]
RNA polymerase inhibitor — rifampicin	Rifamycin	$0.4\times\text{MIC}$	 + Virulence genes involved in intracellular survival - Flagellar genes and virulence genes involved in invasion 	Lux-reporter library [22], Yim <i>et al.</i> , unpublished

^a AA, amino acid.
 ^b AAR, aminoacyl-tRNA synthetase.

Table 2

Functional groups of genes affected by SI antibiotics

Antibiotic	Organism	Effect	References
Tetracyclines	Bacteroides sp	Enhanced gene transfer (conjugation of antibiotic resistance genes)	[57]
	S. epidermidis	Stimulation of bacterial adhesion	[58]
	Streptococcus sp	Changes in exoprotein secretion	[59]
β-lactams	Staphylococcus sp	Decreased biofilm formation	[60]
Cerulenin	S. aureus	Inhibition of protein secretion	[61]
Aminoglycoside	P. aeruginosa	Increased biofilm formation	[62]
	S. pneumoniae	Increased mutation frequency	[63]
Fluoroquinolones	E. coli	Reduced hemolytic activity	[64]
		Induction of colicin synthesis	[65]
	S. aureus	Increased adhesion	[66]
	S. pneumoniae	Increased mutation frequency	[63]
	Mycobacterium fortuitum	Increased mutation frequency	[67]
Macrolides	Mycobacterium avium	Decreased biofilm formation	[68]
	P. aeruginosa	Inhibition of quorum sensing (virulence suppression)	[69]
Lincosamides	Bacillus fragilis	Altered cell morphology and increased DNA fragmentation	[70]
	S. aureus	Changes in exoprotein expression	[59]
Oxazolidinone	S. aureus	Decreased secretion of virulence factors	[71]
Mupirocin	P. aeruginosa	Reduced biofilm formation	[72]
		Reduced flagellin expression	[73]
Rifampicin	E. coli	Reduced toxin secretion	[74]

HSLs can act as opposing signals

Many Gram negative bacteria produce *N*-acyl-homoserine lactone signals

By 1991 more quorum sensing systems were discovered

Bacterium	LuxI/LuxR homolog	AHL sidechain and name ^a			AHL-regulated properties
A. tumefaciens			N-3-oxooctanoyl	(OOHL)	Ti plasmid conjugal transfer
E. caratovora			N-3-oxohexanoyl	(OHHL)	Extracellular virulence factors, carbapenem
P. stewartii			N-3-oxohexanoyl	(OHHL)	Extracellular polysaccharide capsule
P. aureofaciens			N-hexanoyl	(HHL)	Phenazines
R. leguminosarı	ım 🔨		N-3-hydroxy-7-cis- tetradecanoyl	(HTDHL)	Rhizome interactions, root nodulation
R. solanacearur	n		N-hexanoyl	(HHL)	aidA?
			N-octanoyl	(OHL)	

Table 1 Examples of plant-associated bacteria known to utilize AHL signals and name^a

Strains, genes and gene products are described in the text. *Name of the moiety attached to the homoserine lactone ring. Common abbreviations are given in parentheses.

Signals allow for crosstalk

1. Cross-talk or cross-activation by HSLs of other strains

50% of bacteria isolated from wheat roots produced HSLs Range: 106 isolates crossing 7 genera 8% could activate phenazine operon of *P. aureofaciens*

2. The *luxS* gene product, AI-2 is a generally recognized signal

At least 12 genera of Gram-negative bacteria produce AI-2 Unlike HSLs, not species-specific: "bacterial esperanto" HSL allows bacteria to sense population density; AI-2 allows them to sense community density

Previously: 1) AHL's required for *phz* expression2) isogenic AHL donor could complement a *phzl* mutant

* Pullman, WA
 * Pullman, WA
 * Maricopa Cty, AZ
 * Pima Cty, AZ

What about the

rhizosphere

community?

~ 8% activated phenazine gene expression

Lawn of 30-841

Cross- communication using Negative signaling

Lawn of 30-84I (Phzl⁻) 'Good Neighbors' **Positive communication**

'Bad Neighbors' **Negative Communication** **Cross-Communication**

- The demonstration that signal produced by one strain of bacteria could alter the expression of QS regulated genes in another strain of bacteria altered the model of QS regulation.
- It is the quorum of bacterial signals (does not have to be of isogenic origin) that the bacteria senses—not the number of isogenic bacterial cells.
- Need to consider all the signal producing members of the community when thinking about the regulation of of QS mediated traits and ultimately the ecology of interactions in mixed communities.

Signal degradation

HSL signal must be turned over to dampen response.

abiotic: diffusion abiotic: alkali self-degradation: AI-2 (product of LuxS) non-self: AiiA, AiiD: metallohydrolase enzymes of *Bacillus spp*.

Bacillus is Gram+; HSLs are only found in Gram-bacteria. Why might Bacillus produce HSL-degrading enzymes?

Other bacterially produced enzymes that degrade HSLs are likely.

Signal degradation

Ring opening by cleavage of ester bond

Hydrolysis of amide link between HSL and acyl side chain

Expression of a *Bacillus aiiA* gene in *P. aeruginosa* PAO1: Potential for antibiotic?

-reduced the amount of quorum sensing signal

-reduced swarming

-decreased production of several virulence factors and cytotoxic

compounds

elastase rhamnolipids hydrogen cyanide Important in setting up lung infections

However, no effect was observed on: flagellar swimming bacterial adhesion to surfaces

Reimmann et al. 2002. Microbiology 148:923-32

Heterologous expression of *Bacillus* spp. AiiA lactonases in *Burkholderia thailandensis*

-reduced AHL accumulation
-affected motility
-slowed growth
-prevented the beta-hemolysis of sheep erythrocytes

--Ulrich, RL. 2004. Appl. Environ. Microbiol. 70: 6173-6180

Signal mimicry

Certain molecules inhibit (antagonize) the perception of HSL by competing for LuxR

-Other HSLs from same or other organisms

-furanones secreted by macroalga *Delisea pulchra* probably evolved to disrupt colonization of seaweed

-diketopiperazines (cyclic dipeptides) produced by bacteria, fungi

-unidentified compounds from pea and other higher plants

Pharmaceutical value

Couldn't use pharmaceutically because some HSLs affect immune and cardiovascular systems

Signal mimicry

Fig. 1. From algal metabolite to *Pseudomonas* drug. (A) Compound 2, a natural furanone compound isolated from (C) *D.pulchra*. (B) compound C-30, a synthetic furanone with enhanced QSI activity.

The EMBO Journal Vol. 22 No. 15 pp. 3803–3815, 2003

Exploiting quorum sensing for antimicrobial therapy

• We know QS regulates the virulence in many pathogenic bacteria.

•Can we exploit this fact and look for quorum sensing inhibitors for antimicrobial therapy??

•Strategy I : Quorum quenchers inactivating AHL signals already identified:

AHL lactonases (*aiiA from Bacillus* sp) AHL acylases (*aii*D from *Ralstonia* sp) Virulence genes R-AHL Virulence factors

Fig. 1. Schematic representation of the AHL-dependent QS system in Gram-negative bacteria. Symbol: r, the gene encoding the LuxR-type transcription factor (R); i, the gene encoding the LuxI-type AHL synthase (I).

•Strategy II : Blocking the AHL receptor protein by using halogenated furanone compounds from marine algae (*Delisea pulchra*)

•Mechanism??

Fig. 2. The general structure of AHL signals and enzymatic degradation products. (A) The AHL structure and its possible enzyme cleavage sites (see text for discussion of potential enzymes); (B) the corresponding degradation mechanisms of AHL-lactonase and AHL-acylase.