Microbial Deep Subsurface

How does it stack up regarding: Biomass? Metabolism?

	No. of		
Environment	prokaryotic cells, $\times 10^{28}$	Pg of C in prokaryotes*	
Aquatic habitats	12	2.2	
Deanic subsurface	355	303	
Soil	26	26	
Ferrestrial subsurface	25-250	22-215	
Total	415-640	353-546	

Whitman e	et al., 1998 PN	AS	T-4-1 D (D-
Plants:	<u>10tal C (Pg)</u> 560	<u>10tal N (Pg)</u> 12-20	<u>10tal P (Pg</u> 1-2
Prokaryotes:	350-550	70-120	7-12
	14		

Marine Microbiology

How does it stack up regarding: Diversity? Metabolism?

TABLE 1 Analysis of microbial population rRNA by the hybridization kingdom, universal, and SARS1 cluster oligodeoxynucleotide probes Genetic diversity in Sargasso Sea bacterioplankton Population co Eukaryotic Arr Eubacterial AR11 cluster 1.38 0.53 0.00 81.0 66.6 74.6 85.2 19.0 13.7 25.4 6.7 0.0 cayne Head Stephen J. Giovannoni, Theresa B. B. Craig L. Moyer & Katharine G. Field group-specific using arrays of ko artment of Microbiology, Oregon State Unive on 97331, USA $BC/\delta N \times (\delta U/\delta N)^{-5} - \sum_{i=1}^{r} [\delta R/\delta N \times (\delta U/\delta N)^{-5}]r^{-i}$ = $[\delta P/\delta N \times (\delta U/\delta N)^{-5}]\rho^{-5} - \sum_{i=1}^{r} [\delta R/\delta N \times (\delta U/\delta N)^{-5}]r^{-1}$ -6 ity within the units less in rRNAs was (Nature, 1990) a figure than in Fig. 1. Th luded from the analysis o closes 6.481 and 6.481 sminal domain se of an intro-section 1,190.

Stephen J. Giovannoni¹, Lisa Bibbs¹, Jang-Cheon Cho¹t, Martha D. Stapels¹t, Russell Desiderio¹, Kevin L. Vergin¹, Michael S. Rappé¹t, Samuel Laney², Lawrence J. Wilhelm¹, H. James Tripp¹, Eric J. Mathur⁴ & Douglas F. Barolsky⁴

Postechnologies are light-dependent present parage that are predicted in here an inspirator sche in the excluse of the scanne of the symphoty energies of the scanne schematic schematic schematic schematic schematic schematic schematic schematic of large parameters. DBA finguests from scenario "Levy were large schematic large schematic also generatives and an effect schematic schematic schematic also generatives and schematic schemat

(Nature, 2005)

<text><text>

