Microbial Deep Subsurface

How does it stack up regarding:
Biomass?
Metabolism?

Prokaryotes: The unseen majority
Whitman et al., 1998 PNAS

Table 5. Number and biomass of prokaryotes in the world

Prokaryotes: The unseen majority
Whitman et al., 1998 PNAS

Total C (Pg) Total N (Pg) Total P (Pg)

Plants: 560 12-20 1-2

Prokaryotes: ~ 350-550 70-120 7-12

Take Home Message: Prokaryotes contain
60 to 100% the cellular carbon of all plants
along with ~10x the N and P of plants!

No. of
prokaryotic cells, Pg of Cin
Environment > 1028 prokaryotes®
Aquatic habitats 12 22
Oceanic subsurface 355 303
Soil 26 26
Terrestrial subsurface 25-230 22-215
Total 415-640 353-346
*Calculated as described in the text.
Pg = Petagram or 10%5grams
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Figure courtesy of Ken Nealson

Abiotic processes

Magma-hosted systems

Peridotite-hosted systems

Biotic processes

Photosynthesis

Fermentation
/ CO oxidation

Low T ~80°C \

Hydrogen-driven ecosystems
(aerobic; anaerobic; SLIMEs)
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Hydrogen production , Hydrogen consumption

(a) Organic matter degradation
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(b) Anaerobic methane oxidation ]
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CH, +2H,0 —— 4H, + CO,
(Methanosarcinales) ¥ . SRB
4H, + H* + 80,2 ———— HS~ + 4H,0
: (Desulfosarcinales)
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South Chamorro Summit
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Anaerobic Methane Oxidation: CH, + SO,* +20H" = CO,* + 8=+ 3H,0

Serpentinization and methane generation at high pH

2Mg,Si0, + 3H,0 = Mg;Si,OiOH), + Mg(OH),

(*Peridotite) ( water) (serpentine) (**brucite)

South Chamorro Summit

55.3 meters below sea floor|

Mariana Forearc

Site 1200, Hole E

Methane production based on Fischer-Tropsch reaction: ™~

4H, + CO w  CH, + H,0 + 20H

This reaction converts carbonate alkalinity to hydroxyl
alkalinity, increasing surrounding pH

Hydrogen and methane provide energy sources
for deep sea chemotrophic microorganisms

* Peridotite: native rock consisting mostly of the minerals olivine and pyroxene
** Brucite: magnesium hydroxide, found in veins of serpentine
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Marine Microbiology

How does it stack up regarding:
Diversity?
Metabolism?

Genetic diversity in Sargasso
Sea bacterioplankton

Stephen | Giovanroni, Theresa B. Brituchgl,
Craig L. Moyer & Katharine G. Fiekd

Depirtmars ol Merobiciogy. Orgon State Usversty. Corvala,
)
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Bacterial Rhodopsin: Evidence
for a New Type of Phototrophy
in the Sea
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Proteorhodopsin
in marine Bacteria
and Archaea




A light-driven proton pump
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Environmental Genome Shotgun

Sequencing of the Sargasso Sea

). Craig Venter,'® Karin Remington,’ John F. Heidelberg,”
Aaron L. Halpern,” Doug Rusch,® Jonathan A Eisen,”
Dongying Wu,” lan Paulsen,” Karen E. Melson,® William Melson,®
Derrick E. Fouts,® Samuel Levy,® Anthony H. Knap,®
Michael W. Lomas,® Ken Nealson,® Owen White,*
Jeremy Peterson,” Joff Hoffman,” Rachel Parsons,®
Holly Baden-Tillsen,” Cynthia Pfannkoch,” Yu-Hui Rogers,*
Hamilton O. Smith"

We have applied "whole-g " to micrablal
ial Flow and impact Filt: sam)
collected from the Sargasso Sea nearBermuda. A tota of 1,045 bilion base s
annatated,

lhe gene content, diversity, and relative abundance of the crganisms within
these enviranmental samples. These data are estimated to derive from at least
1800 genomic species based on sequence relatedness, including 148 previously
unknewn bacterial phylatypes. We have identified over 1.2 million previousty
unknown genes represented in these samples, including more than 782 new
rhadopsin-like photareceptors. Variation in species present and stoichiometry
suggests substantial cceanss micrabial diversity,

(Science, 2004)

Whole-genome shotgun sequencing
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Proteorhodopsin in the ubiquitous marine
bacterium SART
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Abundance and diversity of microbial life in ocean
crust
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Fig. S1 Maps of the locations of study sites where

Basalt samples from the East Pacific Rise (B) were
collected on and near the ridge axis up to 3 km off-
axis between approximately 9°28'N and 9°50'N (white
boxes). Basalt samples from around the big island of
Hawaii (C) were collected from the Pisces Peak and
South Rift sites on the Loihi seamount and from the
South Point location.

seafloor lavas were collected in the Pacific Ocean (A).

Figure 1| A highly diverse and abundant epi- and endo-lithic microbial community exists on
basaltic lavas from the East Pacific Rise. a, The East Pacific Rise at 9°N is characterized by lava
flows, such as pillow basalts shown here, directly exposed at the seafloor. Scale bar, 40 cm. b.c,
Photographs showing the range of volcanic samples used in this study from fresh and glassy (b) to more
altered and oxide coated (c). Scale bars, 2 cm (b) and 4 cm (c). d.e, SEM images of different presumed
cellular morphologies, such as coccoidal (d) and filamentous (e) structures that were observed on
ferromanganese oxide encrusted and Fe-oxide-coated samples. Scale bars, 5 m.

Figure 2| CARD-FISH analyses. ab,c, Confocal laser scanning micrographs depicting CARD-FISH on lava
surfaces from the EPR. Prokaryotic cells were hybridized with either probe EUB338(-11l) mix (a) or probe
ARCH15 (b) to target Bacteria, or Archaea respectively. A variety of bacterial cell morphologies such as
filaments, cocei, and rods were confirmed with (a). Side-by of Archaea (b) versus
total cells (c) reveals that Archaea account for only a small portion of the total cells. Total cells were identified with
the general DNA stain SYBR Green. The arrows point to some cells that overlap in each frame. Scale bars, 10
pm (@) and 20 pm (b.c).
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Figure 3| Relative bacterial richness from
several environmental studies shown
through rarefaction analyses. The observed
species richness of Bacteria inhabiting seafloor
lavas from the EPR is compared to the richness
found in other ocean environments (a), such as
clone library surveys from the Sargasso Sea
(partial curve shown), a MAR hydrothermal vent
in situ growth chamber, an EPR hydrothermal
white smoker spire, deep-sea sediments from
the Nankai Trough, and ambient bottom
seawater from the EPR. ~ Here the five basalt
clone library results are summed and treated as
asingle ecosystem. The observed elevated
bacterial richness of the EPR basalts (cumulative
community) is also compared to another basalt-
hosted community from the Hawaiian Islands
(HI) and other known high richness environments
(b), such as a farm soil (partial curve shown) and
a hypersaline microbial mat from the Guerrero
Negro Only (partial curve shown). Partial
rarefaction curves are shown for visualization
purposes, however complete data sets were
used in calculating the curve projections. ¢,
Rarefaction curves for the individual EPR and HI
basalt clone libraries and the EPR deep
seawater library. Only partial curves for HI-LPP
is shown (total clones = 246). Each comparative
study in (a) and (b) is based on near full-length
165 rRNA gene sequences, and most studies
are the sum of several environmental samples.
OTUs are defined at a sequence similarity of
97%.

pepe

Fig. S2 Phylogenetic identity of Bacteria from environmental studies. a-e, Distribution of bacterial 165 rRNA
sequences into major taxonomic groups from the cumulative EPR basalt clone library (), the cumulative Hawaiian
basalt clone library (b) Minnesota farm soil (c), ambient bottom seawater from the EPR (d), and an EPR hydrothermal
white smoker spire (). EPRbasalt-others(<0.5% each): Candidatus Scalindua
brodae, and Cand. div. OP11. Hl-others (<1%): Deferribacteres, Spirochaetes, Cand. divs. OD1, TM6, WS3. Soil-
others (<0.5% aach): Fimicutes. Cyanobaclena, Deinococcus-Thermus, Cand. divs. OP11, OP10, SPAM, WS6, TM?,
and BRC1. Haw Bact., Firm, Firmicutes; Verr., Verrucomicrobia;
Planct,, Planctomycetes; cmam Ch\moﬂexl Actino., Actinobacteria; Acido., Acidobacteria; Gemma.,
Gemmatimonadetes; Aquif., Aquificae; Nitro., Nitrospira; Therm., Thermales; Unident., Unidentified

H1 basaltic lavas
528 (Cl 411-715)

Fig. S3 Venn diagram depicting the estimated OTU richness that is shared between the EPR basalts
community [ (# of sequences) = 370] and the HI basalts community (n = 472). The Chaof richness
estimates (determined by DOTUR) for each community are shown under label with 95% confidence
intervals. Shared OTU richness estimates (numbers within the lenses) were determined using the
computer program SONS13. The object sizes represent the approximate OTU memberships but are
not drawn to scale. OTUs are defined at a distance level of 0.03,

—EPR basalts

70 Sargasso Sea
= = =Cumulative deep seawater
——EFR deep seawater

OTus

No. of 165 clones

Fig. S4 Rarefaction analyses comparing the diversity between EPR deep seawater and cumulative
deep seawater (combination of clone libraries from 3 different studies including EPR deep seawater and
two studies by Huber et al.1,2). OTUs are defined at a distance level of 0.03 as assigned by DOTUR.
Analyses show that the addition of clones from the Huber et al. deep seawater libraries increases
species diversity approximately equal to that of Sargasso Sea surface waters. However, the bacterial
diversity found in deep seawater relative to that found in EPR basalt is still the same.

EPR basaltic lavas
40 (C1=338-60%)

Vs . Cumulative Deep
Sea
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Fig. S5 Venn diagram depicting the estimated OTU richness that is shared between the
EPR basalts community [n (# of sequences) = 370] and the EPR deep seawater community
[n=62] or the EPR basalts and the cumulative deep seawater communities [n = 91
(described in Fig. S3)]. The Chaof richness estimates (determined by DOTUR) are shown
below each circle label for each community with 95% confidence intervals. Shared OTU
estimates (numbers within the lenses) were determined using the computer program
SONS13. The circle sizes represent the approximate OTU memberships but are not drawn
to scale. OTUs are defined at a distance level of 0.03.




