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[17] The Application of Rarefaction Techniques to
Molecular Inventories of Microbial Diversity

By JENNIFER B. HUGHES and JESSICA J. HELLMANN

Abstract

With the growing capacity to inventory microbial community diversity,
the need for statistical methods to compare community inventories is also
growing. Several approaches have been proposed for comparing the diversity
of microbial communities: some adapted from traditional ecology and others
designed specifically for molecular inventories of microbes. Rarefaction is
one statistical method that is commonly applied in microbial studies, and this
chapter discusses the procedure and its advantages and disadvantages. Rare-
faction compares observed taxon richness at a standardized sampling effort
using confidence intervals. Special emphasis is placed here on the need for
precise, rather than unbiased, estimation methods in microbial ecology, but
precision can be judged onlywith a very large sample orwithmultiple samples
drawn from a single community. With low sample sizes, rarefaction curves
also have the potential to lead to incorrect rankings of relative species rich-
ness, but this chapter discusses a newmethodwith the potential to address this
problem. Finally, this chapter shows how rarefaction can be applied to the
comparison of the taxonomic similarity of microbial communities.

Introduction

The increasing ease of inventorying microbial diversity bestows exciting
opportunities for microbial ecologists, yet the growing size of molecu-
lar inventories challenges researchers to interpret very large datasets in
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biologically informative ways. Microbial ecologists, like other ecologists,
seek to understand the distribution of biodiversity. To identify these pat-
terns and the biotic and abiotic factors that drive them, methods are
needed to compare microbial communities across time, space, and experi-
mental treatments. As a result, a number of papers address the topic of
statistical approaches for microbial community comparisons (Curtis et al.,
2002; Dunbar et al., 2001; Hughes et al., 2001; Martin, 2002).

Currently, most molecular inventories use polymerase chain reaction
(PCR) amplification of a gene, such as the 16S ribosomal gene, to assess
the diversity of a microbial community from a sample of environmental
DNA. The molecular methodologies have numerous pitfalls, among them
gene duplications, PCR biases, and primer biases. Many authors have
noted these biases and have discussed how to minimize these problems
(Thompson et al., 2002; von Wintzingerode et al., 1997). Still others have
suggested correction factors (Acinas et al., 2004) or new molecular sam-
pling approaches to skip PCR methods all together (Tyson et al., 2004;
Venter et al., 2004). These advances are already yielding invaluable infor-
mation about the extent and consequences of sampling biases for diversity
comparisons.

This chapter concentrates on the problem of undersampling of micro-
bial communities, a problem that seems less likely to be alleviated in the
near future than the problem of PCR‐related biases. For instance, Sargasso
Sea data collected by Venter and colleagues (2004) used shotgun sequenc-
ing to assess the molecular diversity of seawater microbes. This technique
removes PCR and primer biases; however, even with sequencing 1 billion
bp and 1164 16S genes, the study still undersampled the microbial commu-
nity. More than 70% of the ‘‘species’’ of six protein‐coding phylogenetic
markers in the database were singletons, i.e., they were seen only once.
Thus, for microbial ecologists who cannot generate nearly such large
datasets, undersampling will certainly present a problem. In contrast, the
statistical approaches discussed in this chapter can be applied to samples
that knowingly contain methodological biases; as long as these biases are
similar (or random) across samples within a study, one can statistically
compare community diversity and composition.

This article focuses on one approach, rarefaction analyses, for compar-
ing diversity among communities. Rarefaction is by no means the single
best diversity measurement; however, it is probably the most commonly
used statistical method in recent microbial diversity studies. This use is for
good reason, as it is usually a very good place to begin analysis of a new
dataset. We review other diversity statistics used commonly in microbial
ecology elsewhere (Bohannan and Hughes, 2003; Hughes and Bohannan,
2004; Hughes et al., 2001). Furthermore, statistics targeted specifically for
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molecular inventories of microbes are quickly being proposed (e.g., Curtis
et al., 2002; Dunbar et al., 2001; Martin, 2002; Singleton et al., 2001).

What Is Rarefaction?

Background

Rarefaction accounts for the fact that large samples have more species
(or any taxonomic unit) than small samples even if they are drawn from the
same community. Hurlbert (1971) and Sanders (1968) first introduced
the idea of scaling down samples of community diversity to the same
number of individuals so that richness could be compared across samples.
These authors proposed using E(Sn) as a measure of community diversity,
i.e., the expected number of species in a sample of n individuals, from a
larger collection of N individuals containing S species.

Since then, community ecologists have broadened the idea of rarefac-
tion as a statistical procedure to standardize for sampling effort (Gotelli
and Colwell, 2001). Sampling effort can be represented by individuals
sampled, as first suggested, or other units such as number of samples
or sampling time. Because of sampling constraints, analyses of microbial
diversity so far use individual‐based rarefaction, thus we concentrate
on this approach here. However, it is important to note that the unit of
sampling effort used has large consequences for the interpretation
of rarefaction analyses (see Gotelli and Colwell, 2001); as microbial diver-
sity inventories begin to include many samples within one study, this issue
will become more relevant.

Procedure

An accumulation curve is a plot of the cumulative number of species
observed as each individual is sampled and recorded. The curve could be
drawn from the notes of a birder walking through a forest and writing
down in order the identity of every bird she detects (Fig. 1). Molecular
inventories of microbial diversity from one sample usually give a mass
capture of individuals, and thus an accumulation curve means very little.
For instance, a researcher makes a clone library of PCR products and then
randomly picks colonies, or ‘‘individuals,’’ to sequence. In contrast to data
a birder collects along a transect, the sampling order of the clones from
within a clone library does not relate any information about the natural
community.

There is, however, useful information for a microbial ecologist in
a rarefaction curve: a smoothed, or randomized, accumulation curve.
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The curve represents the average number of species observed when n
individuals are drawn with replacement from the same sample over and
over (Fig. 1). In other words, it is the average of all possible accumulation
curves. In the case of a clone library where an accumulation curve is an
arbitrary ordering of clones, a rarefaction curve is the best way to represent
data rather than a random choice of the possible accumulation curves. A
rarefaction curve can be estimated by a randomization method or, in the
case of an individuals‐based sample, by analytic means (Coleman, 1981;
Heck et al., 1975).

A key feature of the rarefaction curve is the error bars around the
curve. Error bars are so crucial to rarefaction analyses and, at the same
time, so often misunderstood. Error bars on a rarefaction curve give a
measure of variance around the average accumulation curve; specifically,
they represent the variability of the number of species observed [i.e., the
variability of E(Sn)] when n individuals are drawn from the entire sample.
When one individual is drawn, the variance is zero because one species is
always observed. Similarly, when all N individuals are drawn, the variance

FIG. 1. An example of hypothetical individual‐based accumulation and rarefaction curves.
The accumulation curve is one possible order of observing the 42 clones. The rarefaction
curve was created with the EstimateS program (Colwell, 2004). (See color insert.)
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is zero because all S species in the sample are observed. Error bars can be
given as variance or standard deviation, but are most useful when reported
as 95% confidence intervals (CIs). The 95% confidence limits for a given
sample size are Sobs ! (1.96)*(the standard deviation of Sobs), where Sobs
is the average number of species observed at that sample size. The 95%
CIs represent the range in which 95% of all possible accumulation curves
of this particular sample fall. (See later for further information about
interpretation of rarefaction error bars.)

A number of software programs will perform rarefaction randomiza-
tions and/or calculate analytical formulas for rarefaction curves. In partic-
ular, EstimateS randomizes and calculates Coleman formulas and is freely
available on the Internet (Colwell, 2004). Although EstimateS can be used
for a number of different dataset types, the most common for microbial
studies are those for which each clone represents the sampling of one
individual. In this case, we find it easiest to load input data as a ‘‘Format
3’’ input file (Fig. 2).

Interpretation of Rarefaction Curves

General Considerations about Diversity Comparisons

Rarefaction analysis of species richness is just one way among many
others to compare community diversity between samples. Given the varie-
ty available, one must evaluate the utility of different diversity statistics in
light of the question of interest and data at hand. As mentioned earlier,
even for large‐scale molecular inventories of microbial diversity, data at
hand are always a minute fraction of the entire community. This fact limits
our ability to estimate the true richness of microbial communities with any
large degree of confidence. Moreover, without knowing the correct answer,
it is impossible to evaluate thoroughly the success of diversity statistics for
any microbial community.

Rarefaction differs from other approaches to diversity measurement.
Diversity estimators attempt to extrapolate from a sample to the true
diversity of a community. Examples of estimators include Chao1 (Chao,
1984) and the Curtis et al. (2002) statistic based on a log‐normal assump-
tion. Estimators provide two functions: (1) to estimate true richness and
(2) to compare these estimates of true diversity among samples. Rarefac-
tion, in contrast, is performed solely for this second purpose, to compare
diversity among samples. To discuss the relative benefits of rarefaction
compared to the use of diversity estimators, we first discuss some general
ideas behind diversity estimation.
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Any sample comparisons, whether of biomass or species richness of
microbial or macrobial communities, must come to terms with three
statistical parameters: bias, precision, and accuracy. Ideally, one would
like an accurate estimate of species richness, a measurement that yields
a very small difference between estimated richness and the true, unknown
richness and a consistent estimate of that truth with every sample
taken of the community (Hellmann and Fowler, 1999). Often we can only
achieve a component of accuracy, either bias or precision. Bias is the
difference between the expected value of the estimator (the mean of
the estimates from all possible samples of the community) and the true

FIG. 2. The EstimateS ‘‘Format 3’’ data file for example data in Fig. 1 Data are entered
into three columns in a spreadsheet: an index of the operational taxonomic units (OTU), a
nonrepeating index of the number of individuals, and a ‘‘1’’ to indicate a sample size of 1 for
each colony. The title of the file must be in the first line, the number of OTU types and the
number of clones in the second line, and the final line after data must be ‘‘‐1,‐1,‐1.’’ The file is
then saved as a tab‐delimited text file and is imported into EstimateS. The right‐hand screen
shows continuation of the columns on the left‐hand side.
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unknown richness of the community being sampled. This difference
reveals whether the estimator consistently under‐ or overestimates the
true richness. Precision is the variation of the estimates from all possible
samples of the community. This variation represents the repeatability of
the richness estimate; i.e., how similar a richness estimate is from one
sample to another of the same community. Figure 3 illustrates bias and
precision in terms of a dart game. A good dart thrower is accurate because
she is both unbiased and precise and therefore always hits the bulls‐eye.
Less‐talented dart throwers are biased, imprecise, or some combination
thereof.

Unlike scoring a dart game between two players, evaluating diver-
sity statistics for microbial communities is difficult because we do not
know where the bulls‐eye is. To test for bias, one needs to know the
true richness to compare against the sample estimates. In contrast, preci-
sion is relatively easy to assess. With multiple samples, the variance of
richness estimates can be calculated and compared. In some cases, an

FIG. 3. An illustration of precision and bias. The bulls‐eye represents a true value that is trying
to be determined. Arrows are individual estimates of the true value. An ideal estimator statistic is
precise and unbiased (i.e., accurate), as in the upper left‐hand corner. (See color insert.)
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estimator may have a closed‐form variance that evaluates the precision of
the estimate.

What Rarefaction Curves Do and Do Not Tell You

By comparing observed species richness, rarefaction is designed ex-
pressly to ignore the issue of bias with respect to true community diversity.
Observed richness is always negatively biased, thus rarefaction curves do
not say much about the true richness of a community. However, most
ecological questions require comparisons of relative diversity (e.g., wheth-
er richness is higher or lower in one community or another) rather than an
exact number of true richness. For these questions, a diversity statistic that
is consistent with repeated sampling (is precise) but biased can be more
useful than one that, on average, correctly predicts true richness but is very
imprecise (Fig. 4). For relative comparisons, bias is not necessarily a
problem as long as the measure is consistently biased. Thus, in theory,
rarefaction might be a good approach for relative richness questions if the
precision issue is addressed.

FIG. 4. An illustration of the importance of the precision of richness estimators. Estimator 1
is unbiased, but imprecise. On average, estimator 1 correctly estimates the actual richness of
habitat A and B, but the variance of the different estimates is large. Thus, if one compares one
estimate of richness from one sample of each habitat, it is easy to incorrectly rank the relative
richness of the two habitats. Two example comparisons are shown with solid lines; one pair of
estimates correctly orders the relative richness of thehabitats, theotherpair orders it incorrectly.
In contrast, estimator 2 is positively biased, but precise.On average, the estimator overestimates
the actual richness; however, because the variance in the estimates is small, any pairwise
comparison of estimates correctly ranks the richness of the habitats. (See color insert.)
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The most common misconception about rarefaction curves is that the
confidence intervals around the curves are a measurement of the precision
of E(Sn) (the observed species richness for a given effort). In fact, the CIs
do not say anything about the value of E(Sn) if one resamples the commu-
nity. Error bars only describe the variation of the accumulation curves as
one reorders subsamples within the original sample. Specifically, the 95%
confidence intervals represent the range in which 95% of all reordered
accumulation curves will fall.

This detail, that rarefaction compares samples instead of communities,
is crucial. A comparison of a rarefaction curve from a grassland and a
rarefaction curve from a forest tells you whether the richness of the two
samples (standardized for sampling effort) is significantly different (Fig. 5),
not whether the richness of grassland and forest communities is significant-
ly different. This difference is particularly important when samples repre-
sent a very small fraction of total diversity (as is the case for microbial
inventories) so that different samples from the same community can have
very different taxonomic representation.

Yet all is not lost for rarefaction. The precision of rarefaction curves
can be addressed by sampling from multiple sites or treatment replicates
(or see Colwell et al., 2004). The key is to sample multiple times so that
many different rarefaction curves are produced. Variation in the curves
from multiple samples of a community then yield an estimate of the

FIG. 5. A comparison of two hypothetical rarefaction curves from a sample of forest
soil (●) and a sample of grassland soil (▲). Error bars are 95% confidence intervals. Curves
reveal that standardizing for a common sampling effort (at 260 clones), the grassland sample
has fewer operational taxonomic units (OTUs) than the forest sample.
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precision of E(Sn) for n individuals sampled. For instance, one could
sample many grassland and forest sites and draw rarefaction curves for
every sample. If the rarefaction curves of the two habitats differ consistent-
ly in observed richness for a common sampling effort n, then one could say
with some statistical level of confidence whether the richness of grasslands
and forest sites differs in richness at that sampling effort. (A technical note:
instead of taking multiple samples from the same community, a researcher
may prefer to take one very large sample and divide it up. When a large
sample is divided into subsamples, the estimated precision of observed
richness applies to the number of individuals of the subsamples, not the
number of individuals of the total sample. In general, however, it is usually
preferable to take independently replicated samples; for instance, indepen-
dent samples can capture spatial heterogeneity and moderate PCR biases
and errors.)

The final nuance of rarefaction is that even with good estimates of
precision for rarefaction curves, the precision measure still applies only
to observed richness at a particular level of sampling effort (of n indivi-
duals). This omission is not a concern if most of the richness of a commu-
nity has been observed and if the rarefaction curves are asymptotically
approaching the true diversity. For microbial inventories, however, sam-
pling effort is low relative to true richness, and the curves are often still
steep at the level of sampling effort. As a result, it is possible that the
communities differ in their species‐abundance patterns so that the rarefac-
tion curves may cross if the sampling effort was increased (Fig. 6). Thus,
even if the rarefaction curves are representative of the communities from
which they are sampled, at low sample sizes they may suggest an incorrect
ordering of relative diversity among communities.

The curve‐crossing problem is the primary reason that diversity estima-
tors remain useful even for relative diversity comparisons. Diversity esti-
mators incorporate information about species’ abundances in the sample in
order to extrapolate true richness. In theory, they predict what happens to
the rarefaction curves as one approaches sampling all individuals in the
community.

The next section discusses a new technique that might help alleviate the
problem of crossing rarefaction curves. However, very little is known
overall about the variation in species‐ or taxa‐abundance curves of micro-
bial communities. Therefore, the sampling effort needed to ensure that
rarefaction curves do not cross with further sampling is also unknown.
Even in the absence of exhaustive surveys of real microbial communities,
a few thorough simulation studies could contribute a great deal to this
question.
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Future Directions

Rarefaction by Coverage

Cao et al. (2002) proposed a modification of rarefaction analysis that
attempts to alleviate the problem of crossing rarefaction curves. They
suggested that one should standardize by an estimate of the coverage of
the sample (the proportion of true richness observed in the sample) rather
than sample size.

In any comparison of two samples, samples will vary in their coverage
of the communities from which they were drawn. This variation may be due
in part to underlying differences between the communities’ species‐abun-
dance distributions (Brose et al., 2003). Take an example of two jars of
colored marbles. The jars contain the same marble richness (i.e., the
number of different colors of marbles), but one jar has an even distribution
of colors and the other contains 90% blue marbles. If 10 marbles are drawn
from each jar, one will almost certainly observe a greater marble richness
from the evenly distributed jar than the blue‐dominated jar. In this case,
standardizing observed richness at 10 marbles falsely suggests that one jar

FIG. 6. Hypothetical accumulation curves for two communities: A and B. Rarified curves
of the sample size indicated would suggest that OTU richness in A is greater than B.
Rarefaction at this sample size cannot distinguish between curves B0 or B00, however. If B0 is
the true curve, then richness in B is greater than A.
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is richer than the other. This is because the samples vary in their coverage.
A greater fraction of total marble richness is observed in a 10‐marble
sample from the evenly distributed jar than the blue‐dominated jar.

To account for differences in sample coverage, one can estimate the
coverage of the sample and compare observed richness at similar estimated
coverage levels (but different sample efforts). Cao and colleagues (2002)
estimated coverage by calculating the ‘‘autosimilarity’’ of a sample.
[Another commonly used coverage estimator is Good’s measure (Good,
1953).] Specifically, they randomly divide the sample in half and estimate
the Jaccard coefficient (a similarity index) between the two sample halves.
This procedure is repeated at different sampling sizes (for our purposes,
the number of individuals) so that one produces a plot of autosimilarity
versus individuals sampled (Fig. 7A). In other words, the procedure esti-
mates coverage by asking how well one‐half of the data reflects the other
half of the data at a variety of sample sizes. High coverage will lead to high
similarity values. Poor coverage will lead to low similarity values.

The autosimilarity curve can then be used to standardize for coverage
on a traditional rarefaction curve. Figure 7B illustrates a case where two
rarefaction curves are likely to cross with further sampling. The bottom
dashed curve is almost linear, and the top solid curve is leveling off. Under
standard rarefaction assumptions, these curves would lead to the conclu-
sion that the solid‐line community is more diverse than the dashed‐
line community. Using the Cao method to produce autosimilarity curves
(Fig. 7A), one estimates that the highest common coverage of the samples
is 30% (a similarity value of 0.3). The autosimilarity curves reveal the
sampling effort (in terms of number of individuals) needed to standardize
for this coverage value; lines dropping down the x axis in Fig. 7A estimate
the number of individuals sampled so that the observed richness represents
30% of the true richness. Reading the observed richness at that sample size
on the traditional rarefaction curve in Fig. 7B yields two observed richness
values, standardized by coverage. By the coverage‐rarefaction method, the
dashed curve is now estimated to have a higher observed richness than the
solid curve.

How well this method works in general for correctly predicting relative
richness remains to be seen. Combined with strategies to sample multiple
sites or treatment replicates, it has the potential to improve predictions of
relative richness using rarefaction curves.

Rarefaction for Other Community Analyses

The problem of standardizing for sample size rears its head in diversity
comparisons other than richness, particularly for comparisons of commu-
nity similarity. Community similarity can be calculated by a variety of
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indices, including the Jaccard index, which considers only the presence
or absence of taxa, and the Bray–Curtis index, which also considers
the abundance of each taxon (Magurran, 1988). This section discusses
how similarity indices are biased by sample size and presents a type of
rarefaction analysis to account for this bias.

While most ecologists studying large organisms usually ignore the prob-
lem of effort standardization for composition comparisons among samples,
the problem is especially critical in microbial studies for two reasons. First,

FIG. 7. (A) An autosimilarity versus sample size curve. (B) A traditional rarefaction curve.
See text for explanation.

304 nucleic acid techniques [17]



estimates of community similarity are highly negatively biased because
microbial inventories represent such small fractions of the total communi-
ty. Second, molecular inventory techniques often produce uneven number
of individuals, usually sequences, between samples. Differences in sam-
pling effort among samples will bias the estimates of true community
similarity.

This issue is well demonstrated by considering two samples drawn from
the same microbial community. For example, imagine two clone libraries
made from the same PCR products from a community that has over
500 bacterial ‘‘species.’’ Because the samples are taken from the same
community, the true similarity is 1. However, if only 10 clones are analyzed
from each library, the similarity value is likely to be low. The low similarity
value is not because the communities are actually different, but simply
because the overall diversity of the microbial community is so high that the
chance of drawing the same composition of 10 clones is very small. If
sampling effort is increased and 200 clones are drawn, then the estimate
of community similarity will increase toward 1.

As with richness, microbial ecologists are usually more interested in
measures of relative community similarity than true community similarity.
For instance, one may want to know whether the microbial community of a
forest gap is more or less similar to the community of the surrounding
forest or a nearby grassland. As long as the samples are standardized for
sampling effort, then with a rigorous sampling design, biologically relevant
comparisons such as these can be made even without knowing the true
community similarities.

As an alternative to randomly throwing out data from samples that are
overrepresented, one can perform a randomization procedure like that for
typical rarefaction curves. This randomization procedure would estimate E
(Cij,n), i.e., an expected value of similarity (C) between samples i and j
given a sampling effort of n individuals. In brief, at the highest common
number of individuals sampled, one draws n individuals at random without
replacement from each sample. Then, one calculates all the Cij values (the
similarity values between all sample pairs). These randomization and cal-
culation steps are repeated over and over to calculate the E(Cij,n) values.

As of yet, we know of no software that offers this type of analysis, but
this is a relatively simple programming problem. Horner‐Devine et al.
(2004) used this procedure to compare 26 salt marsh samples of sediment
bacteria. A completely unaddressed problem is how likely further sampling
might alter relative similarity values among a group of samples; i.e., wheth-
er there is an analogous curve‐crossing problem as in species richness
measurement with rarefaction.
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Conclusions

Rarefaction has promise as a reliable method for comparing molecular
inventories of microbial communities. The method is easy to perform with
freely available software and it is a quick, first‐cut approach to surmise
potential differences between microbial communities. As with all diversity
statistics, however, users must consider carefully the limitations of rarefac-
tion when offering interpretation from its results. First and foremost,
rarefaction, like other diversity statistics, performs better as one samples
a larger and larger fraction of the diversity of a community. When rarefac-
tion curves are steep and linear, then any diversity statistic calculated
from a sample is unlikely to reflect the true community. All diversity
analyses are highly suspect when the community is so undersampled that
the rarefaction curves are linear and steep (close to a slope of 1).

Specifically with regards to rarefaction, we offer five summary
guidelines for its use and interpretation.

" Rarefaction compares observed richness among samples for a given
level of sampling effort. It does not attempt to estimate true richness
of a community.

" A rarefaction curve must be drawn with confidence intervals to make
comparisons against other rarefaction curves. These confidence limits are
essential to assess whether variation in the random order of the sampling
of individuals may account for apparent differences among the curves.

" Comparisons between two rarefaction curves address whether the
observed richness of the samples differs, not whether the richness of the
communities fromwhich the samples were drawn differs. This limitation
holds true because the confidence intervals around a rarefaction curve
do not give a measure of precision of the observed richness.

" Repeated samples from the same community can be used to estimate
the precision of rarefaction and thus compare communities from
which the samples are taken.

" Finally, rarefaction analyses on small samples do not necessarily
yield the correct order of the true richness of the sample, as
rarefaction curves may cross with further sampling.

Because of the last point, we recommend that rarefaction be used in
concert with other diversity estimators. Diversity measures vary in their
performance with respect to bias, precision, and accuracy, and each captures
different qualities of a community and has unique benefits and failings
(Hellmann and Fowler, 1999; Palmer, 1990; Walther and Morand, 1998).
The most robust assessment of a microbial community is one that decides
what it aims to accomplish (i.e., comparison of relative diversity or prediction
of true diversity) and uses several indices to accomplish that goal. For the
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most part, the goal of microbial ecologists is to distinguish between relative
diversitymeasures, such as the differentiation and ordering of richness among
communities or treatments. If the chosen indices give different assessments,
then more sampling is necessary before strong conclusions can be made. If all
measures point to the same ordering of relative diversity among samples, then
the statistical interpretation is at least robust under a variety of assumptions.
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