
BACTERIAL DILUTIONS and A FOOL-PROOF WAY TO FIGURE THEM OUT

Look at the dilution scheme below:

Most questions you will be asked to answer about serial dilutions are of two types:

The **FIRST TYPE** gives you the number of bacterial colonies found on a plate and asks for the number of bacteria per ml in the original culture.

The **SECOND TYPE** gives you the number of bacteria per ml in the original culture and asks you to devise a serial dilution scheme so that you will get plates with "countable" numbers (i.e., between 30 and 300 colonies) of colonies on them.

To solve **TYPE ONE** problems, first determine the individual dilution factor for each tube using the formula:

INDIVIDUAL DILUTION FACTOR = <u>AMOUNT TRANSFERRED</u> AMOUNT TRANSFERRED + AMOUNT ALREADY IN TUBE

For Tube A, the IDF = 0.1 =	0.1	$= 0.01 = 10^{-2}$
0.1 + 9.9	10.0	
For Tube B, the IDF = 0.5 =	0.5	$= 0.1 = 10^{-1}$
0.5 + 4.5	5.0	
For Tube C, the IDF = 0.01 =	<u>0.01</u>	$= 0.001 = 10^{-3}$
0.01 + 9.99	10.0	
For Tube D, the IDF = 1.0 =	1.0	$= 0.1 = 10^{-1}$
1.0 + 9.0	10.0	

Next determine the total dilution factor for the entire dilution series using the formula:

TOTAL DILUTION FACTOR = $(IDF_A)(IDF_B)(IDF_C)(IDF_D)$

For the dilution series above, the TDF for tube $A = 10^{-2}$

The TDF for Tube $B = (10^{-2})(10^{-1}) = 10-3$

The TDF for Tube $C = (10^{-2})(10^{-1})(10^{-3}) = 10^{-6}$

The TDF for Tube $D = (10^{-2})(10^{-1})(10^{-1}) = 10^{-7}$

We can assume that each colony of bacteria arose form one living (or viable) cell immobilized on an agar plate. Thus each colony is a clone of cells. We can now determine the number of live bacteria (or Colony Forming Units [CFU]) per ml of original culture be using the formula:

CFU/ml = <u>number of colonies per ml plated</u> Total dilution factor

As plate E has 275 colonies, in the original culture:

The CFU/ml = $\frac{275 \text{ colonies/ml plated}}{10^{-7}}$ = 2.8 x 10⁹ CFU/ml

Plate F has 28 colonies, but only 0.1 ml was plated: The CFU/ml = $(28 \text{ colonies}/ 0.1 \text{ ml plated}) = 280 \text{ x } 10^7 = 2.8 \text{ x } 10^9 \text{ CFU/ml}$ 10-7

*** If you use these two formulae, you can solve any serial dilution problem.

To solve **TYPE TWO** problems, simply rearrange the formula above to solve for the total dilution factor:

TOTAL DILUTION FACTOR = <u>NUMBER OF COLONIES/ML PLATED</u> CFU/ML

For example, if you want to have a plate with approximately 30 colonies on it and the original culture contains 2.8×10^9 CFU/ml, plug these values into the rearranged equation:

TOTAL DILUTION FACTOR = $\frac{30}{2.8 \times 10^9}$ = 1 x 10⁻⁸

An easy way to set up dilution series like this would be to use 4 tubes, each having an IDF of 10^{-2} , i.e., transfer 0.1 ml into a tube containing 9.9 ml four times. Spread 1.0 ml on a plate and incubate.

SELF TEST

- ** How many colonies would you expect if you plated our 0.1 ml form Tube C?
- ** How many colonies would you expect if you plated out 1.0 ml from Tube C?
- ** IF the IDF for Tube A was 10⁻³ and the IDF for Tube B was 10⁻², what would be the TDF for Tube D?
- ** Starting with a culture that contains 3 x 10⁶ CFU/ml, devise a serial dilution scheme that would yield a plate with 120 colonies.