Microbial Genomics and Chromosome Organization

e Microbial Chromosome Organization

e Generation of full genome sequences

e Genomic Structure & Functional Genomics
e Genome size vs. No. of orfs

e Minimal genome concept

e Lessons from full genomes



Table 7.1 Kinds of genetic elements

Organism Element Description Chromosomal &

Prokaryote Chromosome Extremely long, usually circular, nonChromosomal
double-stranded DNA molecule 1
Plasmid Typically a relatively short, gene'hc elemen.rs
usually circular, double-
stranded DN A molecule,
which is extrachromosomal

Eukaryote Chromosome Extremely long, linear, double-
stranded DNA molecule
Plasmid” Typically a relatively short
circular or linear double-
stranded DN A molecule,
which is extrachromosomal

All Organisms Transposable Double-stranded DNA molecule

elements always found within another
DNA molecule
Mitochondrion Chromosome Intermediate-length DNA
or chloroplast molecules, usually circular
Virus Genome Single- or double-stranded DNA

or RNA molecule

“Plasmids are uncommon in eukaryotes.



Whole-genome shotgun sequencing
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Pseudomonas aeruginosa
6,264,403 bp

Genes in a portion of bacterial genome
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Red genes regulate cellular
processes.

Yellow genes regulate
replication.

Green genes regulate the
production of the cell
envelope.

Functional Organization of H. influenzae: 1.8 Megabases



1IE1JCNIGWAE  Comparison of regulatory genes in selected
bacterial genomes

# Genes in # Regulatory % of

Microorganism the Genome Proteins Total
Pseudomonas aeruginosa 5570 468 8.4
Escherichia coli 4289 250 5.8
Bacillus subtilis 4100 217 5.3
Mycobacterium tuberculosis 3918 117 3.0

Helicobacter pylori 1566 18 1Lt
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E. coli K-12 Genome Organization Lessons

Cured of F-plasmid and Lambda phage: 4.6 Mbs

887% of genome comprised in 4200 orfs

1% tRNAs and rRNAs

0.5% noncoding repetitive sequences

10% regulatory sequences, including promotors,
operators, origin and terminus of DNA replication

70% single copy genes
Some gene clusters like lac and trp operons
~6% polycistronic mRNAs



E. coli K-12 Genome Organization Lessons

Gene orientation can be in both directions,
however, highly expressed genes in the
same direction as DNA replication forks travel.

For example, all 7 rrn operons
Rem: transcription always 5' to 3’

Also found were several different cryptic,
defective prophages and IS elements.

18% of genome from horizontal gene transfer,
including large regions (~40Kb) known as
islands of pathogenicity.
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Figure 25.8 Microbiology: An Evolving Science
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Table 15.2 Gene function in bacterial genomes

Percentage of genes on
chromosome in that category

Functional Escherichia Haemophilus Mycoplasma

categories coli influenzae genitalium
(.64 Mbp)® (1.83 Mbp)® (0.58 Mbp)®
Metabolism 21.0 19.0 14.6
Structural 5.5 4.7 3.6
Transport 10.0 7.0 7.3
Regulation 8.5 6.6 6.0
Translation 4.5 8.0 21.6
Transcription 1.3 1.5 2.6
Replication 2.7 4.9 6.8
Other, known 8.5 5.2 5.8
Unknown 38.1 43.0 32.0

7 Chromosome size. Each organism listed contains only a single circular
chromosome.



Genome size vs. ORFs
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Figure 1 Number of genes (ORFs) plotted against genome size for 44 fully sequenced genomes,
including ten Archaea (squares) and 34 Bacteria. Obligate bacterial parasites are denoted by triangles;
all other bacteria are shown as diamonds. Mycobacterium leprae is a genome ‘in decay’ that has a
large number of pseudogenes. The archaeon Aeropyrum pernix is unusual in having an excessive
number of duplicated ORFs.



Crganism
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Figure 2 Many routes to intracellular adaptation. The differing presence (4 ) or absence ( —) of
certain metabolic pathways in the streamlined genomes of parasitic bacteria shows how variable the

process may be,



Global Transposon Mutagenesis

and a Minimal Mycoplasma
Genome

Clyde A. Hutchison Il "<* Scott M. Peterson,'*+ Steven R. Gill,’
Robin T. Cline,' Owen White,' Claire M. Fraser,!

Hamilton ©. Smith,'{ J. Craig Venter'{s

Mycoplasma genitalivm with 517 genes has the smallest gene complement of
amy independently replicating cell so far identified. Global transposon mu-
tagenasiswas used to identify nonessential genes in an effort to learnwheather
the naturally ccocuming gene complement is a true minimal genome under

laboratory growth conditions. The positions of 2209 transposon insertions in
the completely ssquenced genomes of M. genitalivm and its dose relative .

pnegmoniae were determined by sequencing across the junction of the trans-
poscon and the genomic DMA. These junctions defined 1354 distinct sites of
insartion thatwere not lethal. The analysis suggests that 265 to 350 af the 480

protein-cading genes of M. genitalivm are essential under laboratory growth
conditions, including about 100 genes of unknocwn function.

265 to 350 genes are the minimum necessary genome



The complete genome of the
hyperthermophilic bacterium
Aquifex aeolicus

Gerard Deckert +, Patrick V. Warren* +, Terry Gaasterland i, William G. Young*, Anna L. Lenox*, David E. Grahams,
Ross Overbeek:, Marjory A. Snead*, Martin Keller, Monette Aujay*, Robert Huberl, Robert A. Feldman®,
Jay M. Short*, Gary ). Olsens & Ronald V. Swanson®

* Diversa Corporation, 10665 Sorrento Valley Road, san Diego, California 92121, USA

1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ilinois 60439, USA
s Department of Microbiology, University of Ilineis, Urbana, linois 61801, USA

| Letrstunl far Mikrobiologie, Universittt Regensburg W-8400, Regensburg W-8400, Genmany

Aquifex aeoficus was one of the earliest diverging, and is one ofthe most thermophilic, bacteria known. It can growon hydrogen,
oxygen, carbon dioxide, and mineral salts. The complex metaholic machinery needed for A. aeolicus to function as a
chemaolithoautotroph (an organism which uses an inorganic carbon source for hiosynthesis and an inorganic chemical eneray
source) is encoded within a genome that is only one-third the size of the E. coli genome. Metabolic flexibility seems to be
reduced as a result of the limited genome size. The use of oxygen {albeit at very low concentrations) as an electron acceptor is
allowed by the presence of a complex respiratory apparatus, Although this organism grows at 95 "C, the extreme thermal limit of
the Bacteria, only a few specific indications of thermophily are apparent from the genome. Here we describe the complete
genome sequence of 1,551,335 base pairs of this evolutionarily and physiologically interesting organism.



Metabolic pathways and transport systems for Thermotoga maritima
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Table 16.3




Table 16.3

From Fraser et al., Nature 2000, vol. 406. p. 800.
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Lessons from full genomes

e Size range 600Kb to 12Mb
o Vast number of putative genes with no known function

e Pathogenicity conferred by "Pathogenicity Islands”
44 5Kb in Bacillus anthracis

e Symbiotic Island of >600Kb in Sinorhizobium loti
including genes for nodulation and N-fixation

e Adaptive gene losses in parasitic bacteria
Rickettsia and Chlamidia are ATP thieves using
the same "alien” ADP/ATP translocase

e Relative proportions of functional genes



Microbial Genetic Exchange and Plasmids

« Microbial Genetic Exchange is unidirectionall

Transformation
Transduction
Conjugation

e Each requires Homologous Recombination

e Types of plasmids
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Demonstration of transformation

(A)
Treatments
Streptococcus
| pheumoniae
Bacterium ~&
Results

Living Type S No live bacteria
bacteria recovered recovered



Demonstration of transformation

Treatments

) Living Type
pacl| R + heat-
) killed Type S

; Heat-killed .
\E{ Type S Transformation

Results

No live bacteria Living Type S
recovered bacteria recovered

Type R has been
transformed to Type S.




(B) Each sample is added Only the DNA sample
to Type R cells. transformed Type R

to Type S.
DNA and protein are Protein is removed,
extracted from Type S. leaving Type S
DNA only...
V4 -
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9/ enzyme & &
? @ _/'J g, Wy Type R and
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cells DNA-degrading RN
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Only Type R

...DNA is removed, leaving present
Type S protein only.




Generalized transduction

Phage lac” E. coli bacterium
genome /,
| W _Host chromosome

chromosome
is disrupted.

+ pY lac operon is
incorporated
into phage.




Generalized transduction (cont.)
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Specialized transduction
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Bacterial conjugation
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(B)
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Homologous Recombination
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Homologous Recombination

strand invasion
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Homologous Recombination

(B)
a B 3"
5}
A b_ s
3)
...cutting and
...to align the resealing to form
strands for ... separate duplexes.

This duplex

...and this
rotates... duplex rotates...




Types of homologous recombination in bacteria
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Types of homologous recombination in bacteria
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R plasmids of pathogenic bacteria
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Table 10.3 Some phenotypes conferred by plasmids in prokaryotes

Phenotype class”

Organisms®

Antibiotic production

Conjugation

Physiological functions

Degradation of octane, camphor, naphthalene

Degradation of herbicides

Formation of acetone and butanol (&2 Section 12.20)

Lactose, sucrose or urea utilization and nitrogen fixation
Nodulation and symbiotic nitrogen fixation (&= Section 19.22)
Pigment production

Resistance

Antibiotic resistance (&= Section 20.12)

Resistance to cadmium, cobalt, mercury, nickel,
and/or zinc (&5 Section 19.16)

Bacteriocin resistance (and production)

Virulence

Host cell invasion

Coagulase, hemolysin, enterotoxin (=% Sections 21.9 and 21.11)
Enterotoxin, K antigen (€7 Sections 12.11 and 21.11)
Tumorigenicity in plants (&= Section 19.21)

Streptomiyyces

Escherichia, Pseudomonas, Rhizobium, Staphylococcus, Streptococcus,
Sulfolobus, Vibrio

Pseudomonas
Alcaligenes

Clostridium

Enteric bacteria
Rhizobium

Erwinia, Staphylococcus

Campylobacter, Enteric bacteria, Neisseria, Staphylococcus
Acidocella, Alcaligenes, Listeria, Pseudomonas, Staphylococcus

Bacillus, Enteric bacteria, Lactococcus, Propionibacterium

Salmonella, Shigella, Yersinia
Staphylococcus

Escherichia

Agrobacterium

™ Only a few of the many phenotypes known to be associated with plasmids are given.
¥ Only a few well-characterized examples are given. All of the organisms given in the list are Bacteria except for Sulfolobus, which is a member of the Archaea.



