Microbes and Mineral Cycling

Biogeochemical cycles on a
global scale

Photosynthesis Is the
Source of Atmospheric O,

* Cyanobacteria, which evolved the
ability to split water into hydrogen
ions and O,, created atmospheric O,.

+ Accumulation of free O, in the
atmosphere made possible the
evolution of aerobic metabolism.

Extant Microbial Mat Communities
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Balance between biosynthesis and biodegradation

Cycling of carbon |
is dependent on
biodegradation and
photosynthesis.
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The carbon cycle, closely connected with oxygen cycle
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Most carbon in carbonate rocks & sediments

Table 19.3 Major carbon reservoirs on Earth

Carbon Percent of total

Reservoir (gigatons)® carbon on Earth
Oceans 38 % 10° (>95% 0.05

is inorganic C)
Rocks and sediments 75 % 108 (=80% 995"

is inorganic C)
Terrestrial biosphere 2 x 10° 0.003
Aquatic biosphere 1-2 0.000002
Fossil fuels 4.2 % 10° 0.006
Methane hydrates 10* 0.014
Atmosphere 720 0.005

# One gigaton is 10” tons, Data adapted from Science 290:291-295 (2000).
" Much of the organic carbon is in prokaryotic cells,
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Options for a microbial community in aquatic sediments:
one microbe’s waste is another microbe’s treasure!
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Fig. 22. A comparison between C, § and N oxidation/reductions. The most reduced and the
maost oxidized compounds of the C, S and N cycles are ged in pairs, sep d by a distance
which represents an & ¢~ difference between the extremes. Given vertically are the G, for the
oxidation, by Oy, of the reduced form. There is a decreasing energy yield through the series C,
5 to N which is represented by the vertical distance between the oxidized and the reduced forms.
The location of the lines relative to each other is only approximately correct and is designed to
illustrate the decrease in reducing potential through the series H;, CH,, H,S to NH, and the
increase in oxidizing potential through the series CO;, $05°, NOj3 10 O,

Take Home Message

» The oxygen and carbon cycles are interconnected
through the complementary activities of
autotrophic and heterotrophic organisms.

o Microbial decomposition is the single largest
source of CO, released to the atmosphere.




Microbes and Origins of Life

Evolution has occurred almost
elusively in a microbial world Il

Oldest Known Fossils of Living Organisms (~3500 Mya)

Living Columnar Stromatolites, Shark Bay, Western Australia




Modern Stromatolites from Yellowstone Natl. Park
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zones of refuge.
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Almost all are
Thermophiles!
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Alternative source of H,
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Porphyrin Ring opens
many possibilities for
metabolic pathways!!!

Which ones are
Domain specific?

Cytochromes: Bacteria...
Chlorophyll: Bacteria...
Corrinoids: Archaea only
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