BIOL 345 FUNDAMENTALS OF MICROBIOLOGY Winter 2006

Instructor: Craig L. Moyer

Office Hours: TR: 2 - 3pm & by appointment @ BI 409

Lecture: TR: 10 to 11:20 am in SL 140

Homepage: http://fire.biol.wwu.edu/cmoyer/cmoyer.courses.html

Email: cmoyer@hydro.biol.wwu.edu

Required Text: Microbial Life, 2002. Perry, Staley and Lory. Sinauer Publishers.

Objectives of the Course:

Seven Central Themes will guide your successful study of Microbiology:

- 1. Microbiology in its historical perspective;
- 2. Microbes as cellular systems;
- 3. Microbes as energy transducers;
- 4. Microbes as agents of environmental and geochemical change;
- 5. Microbes as tools for the study of macromolecular processes;
- 6. Microbes as agents of infectious disease; and
- 7. Microbes as products of evolutionary change (This theme is intercalated throughout!)

Evaluation of Coursework:

Two lecture exams @ 150 pts each	300
Comprehensive final exam	<u>200</u>

Total Points: 500

The two midterm exams are scheduled outside of the usual lecture period to give you time to develop reasoned answers and essays. **Note the dates and times of the exams and work out possible conflicts now.** Make-up exams will be given only if you are excused from the exam BEFORE the scheduled date and time, or, in the event of illness, you have a note from a health professional <u>confirming</u> that you were unable to take the exam during the scheduled time.

EXAM I	Monday, Feb 6	5-7pm	SL 150
EXAM II	Monday, Feb 27	5-7pm	SL 150
FINAL	Monday, March 13	8-10am	SL 140

MICROBIOLOGY "TENTATIVE" COURSE OUTLINE

LECTURE DATE TOPICS

Week 1 Historical Perspective

Jan 5 R Course Introduction: Why Study Microbes?

Week 2

Jan 10 T Historical Perspectives on Microbiology

Microbes as Cellular Systems

An Overview: Comparing Prokaryotic and Eukaryotic Cells

Jan 12 R The Prokaryotic Cell: Organization and Structure

The Prokaryotic Cell: Form and Function

Week 3

Jan 17 T Microbial Phylogeny, Taxonomy and Classification

Jan 19 R Microbial Diversity & Ecology

Week 4 Microbes as Energy Transducers

Jan 24 T An Overview: Metabolic Strategies Generating ATP

Jan 26 R Heterotrophic Generation of ATP: Respiration & Fermentation

Week 5

Jan 31 T Autotrophic Generation of ATP: Chemolithotrophy
Feb 2 R Autotrophic Generation of ATP: Photoautotrophy

(End of MT#1 Info)

Week 6

Feb 7 T Biogeochemical cycles & Microbial Modification of the Biosphere

Feb 9 R Bacterial Growth Parameters and Measurements

Effects of Environmental Factors & Life in Extreme Environments

Week 7 Moyer out of Town Week

Feb 14 T Microbial Origins of Life - Video "It Came from Outer Space"
Feb 16 R Impact of Infectious Diseases - Video "SmallPox Deadly Again?"

Week 8 Microbial Genomes & Molecular Processes

Feb 21 T Bacterial Chromosomes, Comparative Prokaryotic Genomics

Feb 23 R Regulation of Gene Expression, Attenuation Control

(End of MT#2 Info)

Week 9 Microbes as Agents of Infectious Disease

Feb 28 T Control of Microbial Growth

Mar 2 R Antibiotics & Antibiotic Resistance

Week 10

Mar 7 T Normal Flora, Virulence and Pathogenicity
Mar 9 R Acellular Pathogens & Emergent Diseases

READING ASSIGNMENTS FOR BIOLOGY 345

Readings are from the required text: Perry, Staley and Lory. 2002. Microbial Life. Sinauer Publishers.

LECTURE TOPIC	READINGS
Overview and Historical Perspective	Chapter 1 & 2
Microbes as Cellular Systems	
· · · · · · · · · · · · · · · · · · ·	Chapter 1
The Prokaryotic Cell, Structure & Function	Chapter 4
Microbial Taxonomy and Classification	Chapter 17
Phylogeny of Microorganisms	Chapter 17
Microbial Ecology	Chapter 24
Microbes as Energy Transducers	
Metabolic Strategies	
Respiration & Fermentation	Chapter 8
Chemolithotrophy	Chapter 8
Photoautotrophy	Chapter 9
Biogeochemical Cycles	Chapter 24
Metabolic Diversity	Chapter 5
Microbial Growth	Chapter 6
Microbial Genomes & Molecular Processes	
Bacterial Chromosomes	Chapter 13
Comparative Prokaryotic Genomics	Chapter 16
Plasmids & Genetic Exchange	Chapter 15
Attenuation	Handout
Microbes as Agents of Infectious Disease	
Control of Microbial Growth	Chapter 7
Antibiotics & Antibiotic Resistance	Chapter 7 Chapter 7
Normal Flora	Chapter 26
	-
Virulence and Pathogenicity	Chapter 26
Viruses, Viroids, and Prions	Chapter 14
Emergent Diseases	Chapter 29 & 30