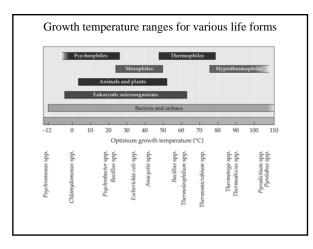
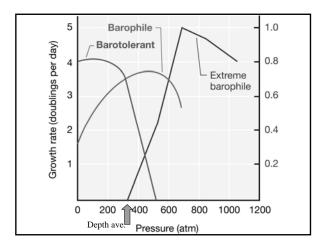
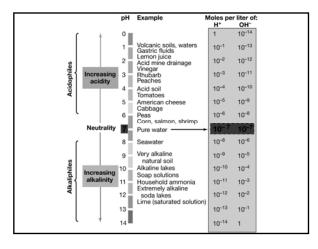

Microbial Growth

Environmental Forcing Functions:

- Temperature: Psychrophile, Mesophile, Thermophile, & Hyperthermophile Cardinal Temps: Min*, Max, & Optimal* Q₁₀ Rule: 10°C rise will double the growth rate*
- Pressure: Barophiles (Most are also psychrophiles!) Found only in the deep ocean....so far



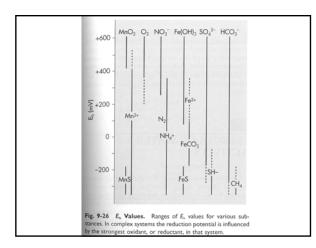

Species	Range (°C
Psychrophiles	
Cytophaga psychrophila	4-20
Bacillus insolitus	<0-25
Aquaspirillum psychrophilum	2-26
Mesophiles	
Escherichia coli	10-40
Lactobacillus lactis	18-42
Bacillus subtilis	22-40
Pseudomonas fluorescens	4-40
Thermophiles	
Bacillus thermoleovorans	42-75
Thermoleophilum album	45-70
Thermus aquaticus	40-79
Chloroflexus aurantiacus	45-70
Hyperthermophiles (Archaea)	
Hyperthermus butylicus	85-108
Methanothermus fervidus	65-97
Pyrodictium occultum	80-110
Thermococcus celer	70-95

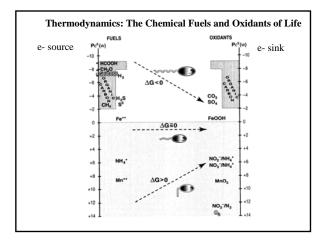


Microbial Growth

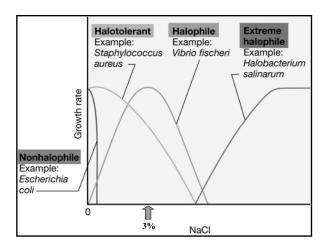
Environmental Forcing Functions:

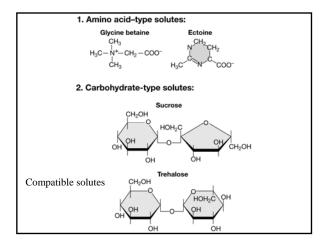

- pH: acidophiles & alkaliphiles cytoplasm still near neutral
- eH: available electron donors & terminal electron acceptors


affects the chemistry of the environment

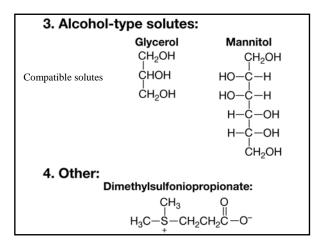


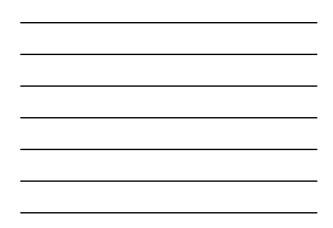
Concentration	in moles	/liter	Examples	
[OH"]	[H*]	pН		Bacterial/fungal growth
10-14	10*	0 H	ydrochloric acid	0 Acidophilic
10-13-	10"	1 - 50	omach acid	1 bacteria
10 ⁻¹² - A	- 10-2	2 - Le	mon juice	2-
	10-3	3 - Vi	inegar, cola, beer	3
10 ⁻¹⁰ -	- 10-4	4 - To	omatoes	4 - Most bacteria
10* - <u>1</u>	- 10'5	5 - Bi	ack coffee	5
10** -	- 10**	6 - U	rine aliva (6.5)	•
10 ⁻⁷ - Neutral	- 10'7	7 - Di	istilled water ood (7.4)	7 - Most fungi
10 ⁻⁶ - (Å)	- 10**		awater	8-
	- 10*	9- Be	aking soda	9
10" - Ajulio	- 10'**	10 - G	reat Salt Lake	10 -
10 ⁻³ -	- 10 ⁻¹¹	11 - H	ousehold ammonia	11 -
10"2	- 10-12	12 - Bi	carbonate of soda	12 -
10 ⁻¹ - 🚆	- 10'13	13 - 0	ven cleaner	13 -
10.0	10-14		odium hydroxide IaOH)	14 Growth rate

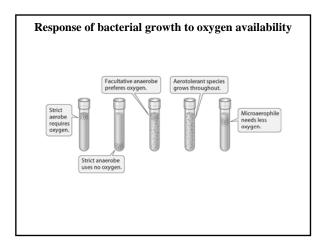


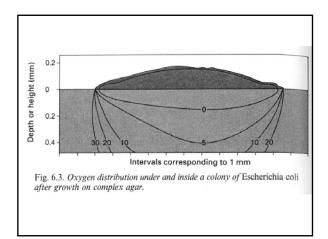

Microbial Growth

Environmental Forcing Functions:


- Salt: Halophiles Compatible solutes: amino acid derivatives (e.g., proline & glycine)
- Water Activity: Xerophiles (live in very dry habitats) All microbes are **osmotrophs**, must use organic material in solution!
- Oxygen Usage: aerobe, facultative (an)aerobe, microaerophile, obligate anaerobe DeTox enzymes: Catalase, Peroxidase, SOD

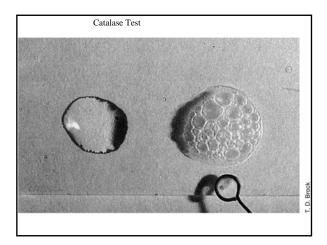






Туре		Organisms	a _w
Nonhalophil	es	Aquaspirillum and Caulobacter	1.00
Marine form	s	Pseudomonads and Alteromonas	0.98
Moderate ha	lophiles	Vibrio species and gram-positive cocci	0.91
Extreme halo	philes	Halobacterium and Halococcus	0.75

Form	Formula	Simplified Electronic Structure	Spin of Outer Electrons
Triplet oxygen (normal atmospheric form)	$^{3}O_{2}$	Ó—Ó	
Singlet oxygen Nasty!	$^{1}O_{2}$	Ó—Ó	
Superoxide free radical	O_2^-	Ö—Ö	
Peroxide	$O_2^{2^-}$	ö—ö	


$$O_2 + e^- \rightarrow O_2^-$$
 Superoxide
 $O_2^- + e^- + 2 H^+ \rightarrow H_2O_2$ Hydrogen peroxide
 $H_2O_2 + e^- + H^+ \rightarrow H_2O$ + OH• Hydroxyl radica
OH• + $e^- + H^+ \rightarrow H_2O$ Water

Overall: $O_2 + 4 e^- + 4 H^+ \rightarrow 2 H_2O$

4 electron reduction of O_2 to water

Protect the Cell of Oxygen	ial Enzyme Against Toy	
Microorganism	Catalase	Superoxide Dismutase
Aerobe	+	+
		+
*****	+	1
Facultative anaerobe Microaerophile	+	+

(a) Catalase: $H_2O_2 + H_2O_2 \rightarrow 2 H_2O + O_2$ (b) Peroxidase: $H_2O_2 + NADH + H^+ \rightarrow 2 H_2O + NAD^+$ (c) Superoxide dismutase: $O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$ (d) Superoxide dismutase/catalase in combination: $4 O_2^- + 4 H^+ \rightarrow 2 H_2O + 3 O_2$ (e) Superoxide reductase: $O_2^- + 2 H^+ + cyt c_{reduced} \rightarrow H_2O_2 + cyt c_{oxidized}$

Cytochrome Oxidase Test

E.c

Ps. a

10

An important diagnostic indicator for the identification of *Pseudomonas* and *Neisseria* spp.

Oxidase Test

BBUM	BrySlide™	
Ec (-)	(+) R	s.a
E. coli	Ps. aer	uginosa
DICKINS		