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Figure 2.7 Cumulative history of O; released by photosynthesis through geologic time. Of
more than 5.1 X 10% g of O; released, about 98% is contained in seawater and sedimentary
rocks, beginning with the occurrence of Banded Iron Formations at least 3.5 billion years
ago (bva). Although O, was released to the atmosphere beginning about 2.0 bya, it was
consumed in terrestrial weathering processes to form Red Beds, so that the accumulation of O,
to present levels in the atmosphere was delayed 1o 400 mya. Modified from Schidlowski (1980).

Present-day location of O,



John M. Hayes

® Figure 11.7 Banded iron formations. An exposed cliff about 10
m in height containing layers of iron oxides interspersed with layers
containing iron silicates and other silica materials. Brockman I[ron
Formation, Hammersley Basin, Western Australia. The iron oxides
contain iron in the ferric (Fe®") form produced from ferrous iron (Fe?™)
primarily by the oxygen released by cyanobacterial photosynthesis.



Balance between biosynthesis and biodegradation
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Figure 3.6 Seasonal fluctuations in the concentration of atmospheric CO, (1981-1984),
shown as a function of 10° latitudinal belts (Conway et al. 1988). Note the smaller amplitude

of the fluctuations in the southern hemisphere, reaching peak concentrations during northern
hemisphere minima.



The carbon cycle, closely connected with oxygen cycle
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The redox cycle
Organic compounds for carbon
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Anoxic decomposition
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AMO is
backwards and
requires a friend

Antje Boetius and Armin Gieseke :

@

Reaction Organism  AGY(kJ)

CH;+2H,O ——> CO, + 4H, Methanogen +131

SO+ 4 Hy+H*—> HS" + 4 H,0 Sulfate-reducer 156

Sum: 80,2 + CH, —> HCO3; + HS™ Syntrophic 25
+H,0 reaction

(6)



Alternative source of H,

uv
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®Figure 11.6 A possible energy-generating scheme for primi-
tive cells. Formation of pyrite leads to H, production and S° reduction,
which fuels a primitive ATPase. Note how H,S plays only a catalytic
1ole; the net substrates would be FeS and S°. Also note how few
different proteins would be required. The AGY of the reaction
FeS + HyS — FeS,; + Hy = —42 kJ. An alternative source of H, could
have been the UV-catalyzed reduction of H" by Fe?* as shown.

Chemosynthesis or
Photosynthesis???

Simple hydrogenase
or simple rhodopsin???



Porphyrin ring opens
many possibilities for
metabolic diversity!!!

Which ones are Domain
& % specific?

Cytochromes: Bacteria...
- Chlorophyll: Bacteria...
1 Corrinoids: Archaea only

Cytochromes

1

Anaerobic

respirations

(0,7, 8°, Fe®", NO,~
organic electron

acceptors)
(oxidative phosphorylation)




