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Figure 2.7 Cumulative Nistory of O releaseel by photosynthesis through geologie time. Of
more than 5.1 % Oy released, about 98% is contained in seawate 1 sedimentary
rocks, beginning with the eccurrence of Banded Tron Formations at least llion years
ago (bya). Alhough O, was rebeased 10 the aimosphere beginning about 2.0
consumed in terrestrial weat processes 1o form Red Beds, so that the acoumulation of Oy
1o present levels in the armosphere was debaved 1o 400 mya. Modified from Schidiowski (1980).

1, it was

® Figure 11.7 Banded lron formations. An exposed cliff about 10
m in height containing layers of iron oxides interspersed with layers
containing iron silicates and other silica matesials. Brockman lron
Formation, Hammersley Basin, Western Australia. The iron oxides
contain iron in the ferric (Fe®* | form produced from ferrous iron (Fe® )
primarily by the cxygen released by
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The redox cycle
for carbon

Organic compounds

Anoxic decomposition Gaicen.

AMO is
backwards and
requires a friend

Artyn Bostiss and Amin Geseke

Organism  AGY(kJ)

Reaction

CHy+2Ho0 ——= CO; + 4H; Methanogen  +131
50,2+ 4Hy+ H* —= HS" + 4 H,0 Sulfate-reducer -156

Sum: 80,2 + CHy — HCO;™ + HS™ Syntrophic -25
+HsO reaction
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#Figure 11.6 A possible energy-generating scheme for primi-
tiwn cells. Formation of pyrite Jeads to H; production and 5% reduction,
which fuels & primitive ATPase. Note how HyS plays only a catalytic
mie; the net substrates would be FeS and 5% Also note how few
difierent proteins would be required. The AGY of the reaction
FeS + HyS —FeS; + Hy = —42 k. An alternative source of Hy could

Dave been the UV-catalyzed reduction of H™ by Fe'* as shown,

Porphyrin ring opens
many possibilities for
metabolic diversity!!!

Which ones are Domain
specific?

Cytochromes: Bacteria...
Chlorophyll: Bacteria...
Corrinoids: Archaea only




