£ wo
7] ] F Y sixi0iy
E] C
.é 80+ L
& F
=) C¢ opboundas 3
604 ) 5
2 / [ 4 a0 (-83%) 2
E| / + =
S 40 / L k=]
E s E &
2 v Atmosphenc E
3 i : L
T w4 ,‘I ] Beginaing of QuA% L Z
s »1 ¢ | Atasphenc O F) orbusdss 2
g ol | b 505 (~15%)
0 e
§ Oceurreace of __ | —_— Moleculas
. onygen
“red beds” [ — (~2%)
Occurrence of | | | | I
banded ire | | |
formatica | i | |
; L]
40 30 20 L0 Today
Time (107 years before present)
we hisory of Oy releasedd by photosythesis through geologic tme. OF
me 5.0 % W g of O released, about 98% is contained in 1 sedimentary

illion years
0 b, it s

ming with the ocourrence of Banded lron Formati

comsumed in terrestrial weathering processes to form Red Beds, so that the accumulation of Oy
10 present levels in the atmosphere was delaved 10400 mya. Modified from Schidlowski (1980),

# Figure 11.7 Banded iron formations. An exposed chiff about 10
m in height containing layers of iron oxides interspersed with layers
containing iron silicates and other silica matesials. Brockman lron
Formation, Hammersley Basin, Western Australia. The iron oxides
contain iron in the ferric (Fe®* | form produced from ferrous iron (Fe® )
rimaril: the &n released anobacterial photosynthesis.

Balance between biosynthesis and biodegradation

Cycling of carbon
is dependent on
blodegradation and
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AMO is
backwards and
requires a friend
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Reaction

Organism  AGY(kJ)
CHy+2Ho0 ——= CO; + 4H; Methanogen  +131
502+ 4Hy+H*— HS" + 4H,0 Sulfate-reducer -156

Sum: 80,7 + CH; —= HCO;" + HS™ Syntrophic 25
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#Figure 11.6 A possible energy-generating scheme for primi-

thwe cells. Formaticn of pyrite leads to H; production and 5° reduction,

which fuels a primitive ATPase. Note how H;S plays only a catalytic

mle; the net substrates would be FeS and 5% Also note how few

diflerert preteins would be required. The AGY of the reaction

42 kJ. An alternative source of H; could
goticn of H- by Fe'* az shown,

Porphyrin ring opens
many possibilities for
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