Identification for the Octopus Spring Pink Filaments

Aquifex pyrophilus

Yellowstone "Pink Filament" Isolates

0.05

tem. This transport establishes a proton gradient.

Figure 9.20 Reversed Electron Flow. The flow of electrons in the transport chain of *Nitrobacter*. Electrons flowing from nitrite to oxygen (down the reduction potential gradient) will release energy. It requires protonmotive force or ATP energy to force electrons to flow in the reverse direction from nitrite to NAD⁺.

Making Sugar from CO₂: The Calvin–Benson Cycle

- The Calvin–Benson cycle has three phases:
- Fixation of CO₂
- Reduction (and carbohydrate production)
- Regeneration of RuBP.
- RuBP is the initial CO_2 acceptor, 3PG is the first stable product of CO_2 fixation. Rubisco catalyzes the reaction of CO_2 and RuBP to form 3PG.

RuBP is the CO₂ Acceptor

World's Most Abundant Protein!

Organic Carbon Compounds

Anaerobic Respirations

Assimilative vs. Dissimilative Metabolisms

Winogradsky's drawings of Beggiatoa

White Mat Filaments Sulfur-oxidizing Bacteria Dive R662 Axial Caldera Ashes Vent Field ROPOS Vent Settling Array "L" 07/20/02

TABLE 17.3 Sulfur compounds and electron donors for sulfate reduction

Compound

Oxidation state

Oxidation states of key sulfur com	pounds
Organic S (R—SH)	-2
Sulfide (H ₂ S)	-2
Elemental sulfur (S ⁰)	0
Thiosulfate $(S_2O_3^{2-})$	+2 (average per S)
Sulfur dioxide (SO ₂)	+4
Sulfite (SO_3^{2-})	+4
Sulfate (SO_4^{2-})	+6
Some electron donors used for sulfate reduction	
H ₂	Acetate
Lactate	Propionate
Pyruvate	Butyrate
Ethanol and other alcohols	Long-chain fatty acids
Fumarate	Benzoate
Malate	Indole
Choline	Hexadecane

PAPS (Phosphoadenosine 5'-phosphosulfate)

Sulfur Disproportionation

$S_2O_3^{2-} + H_2O \rightarrow SO_4^{2-} + H_2S$

$\Delta G^{0'} = -21.9 \text{ kJ/rxn}$

Get your cake and eat it too!

HG. 3. L. ochraces-like sheaths collected at the Pahaka wate tent marker 27. The sample has been stained with Syte. Paral B is the same image as in paral A but viewed by epiflasitescence to feveral a filstnerit of cells inside the iton-energated sheath. The cells are only visible when stained; most of the sheaths are simply. But, 5 µm.

Neutrophilic Fe-Oxidizing Bacteria

Bog in Iceland

Fe-Oxidizers

Autofluorescence in methanogen cells due to the presence of the unique electron carrier F_{420}

Methanogenesis

Chemoautotrophs: $CO_2 \rightarrow CH_4 + Org. C$ H_2 as electron donor

Chemoorganotrophs: Acetate/MeOH \rightarrow CH₄ + CO₂ Org. C as electron donor

Global Biogenic Methane Production:1/3 Chemoautotrophs2/3 Chemoorganotrophs