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All major types of nutrition and metabolism evolved among prokaryotes:
they are the ultimate biochemists

The prokaryotes exhibit some unique modes of nutrition as well as every type
of nutrition found in eukaryotes.

Major Modes of Nutrition:

Prokaryotes exhibit a great diversity in how they obtain the necessary resources
(energy and carbon) to synthesize organic compounds.

= Some obtain energy from light (phototrophs), while others use
chemicals taken from the environment (chemotrophs).

= Many can utilized CO, as a carbon source (autotrophs) and others
require at least one organic nutrient as a carbon source (heterotrophs).
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Depending upon the energy source AND the carbon source, prokaryotes have
four possible nutritional modes:

1. Photoautotrophs: Use light energy to synthesize organic
compounds from CO, — Includes the cyanobacteria. (Actually all
photosynthetic eukaryotes fit in this category.)

2. Chemoautotrophs: Require only CO, as a carbon source and
obtain energy by oxidizing inorganic compounds. This mode of
nutrition is unique only to certain prokaryotes.

3. Photoheterotrophs: Use light to generate ATP from an organic
carbon source. This mode of nutrition is unique only to certain
prokaryotes.

4. Chemoheterotrophs: Must obtain organic molecules for energy
and as a source of carbon. Found in many bacteria as well as most
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Two Ways to Make ATP: Quick & Dirty or
Turbo-Charged
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Cellular Locations for Energy Pathways
in Eukaryotes and Prokaryotes
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Electron transport chain in aerobic bacterium

Cytochrome ¢
oxidase

Periplasm @ @ O @ @ @

Electrons flow down |
a cascade of carriers,

Abbreviated electron transport
chain of an “iron-oxidizing” bacterium

This chain pumps electrons
from iron (Fed*) into the cell.

Electrons react with Oy
to remove H* from the
=, cytoplasm, creating
Cytoplasm negativity.

NADH “feeds” Protons are pumped
alectron carriers of | | outof the celland a Ultimately, the
cell membrane, charge separation electrons pass to
] develops. | 03 to form Hz0.
Ouisidie of cell ® Protans pass through

channel formed by Fy

ATP Synthase
Structure & Function

-..Fy uses energy
derived from this
proton flow to.
synthesize ATP.

Cytoplasm

= - F1 Subunit Topview
ey v i
: : 4 ATP Synthase acts as
L G y a rotary motor turning
ek 2 3 in 120 degree steps.
B
ATP
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Table 9.2  ATP Yield from the Aerobic Oxidation
of Glucose by Eucaryotic Cells

Glycolytic Pathway
Substrate-level phosphorylation (ATP) 2 ATP*
Oxidative phosphorylation with 2 NADH 6 ATP
2 Pyruvate to 2 Acetyl-CoA
Oxidative phosphorylation with 2 NADH 6 ATP
Tricarboxylic Acid Cyele
Sut level phosphorylation (GTP) 2 ATP
Oxidative phosphorylation with 6 NADH 18 ATP
Oxidative phosphorylation with 2 FADH, 4 ATP
‘Total Aerobic Yield 38 ATP

ATF yields are caleulated with an assamed PO ratio of 3.0 for NADH and 2.0 for FADH ..

Fermentation — Key Features

(1) Substrate-level phosphorylation is the rule*.

(2) Always anaerobic (even when some O, might be around).
(3) No externally supplied terminal electron acceptor.

Many types.... 2 major themes

(1) NADH+H* gets oxidized to NAD*

(2) Electron acceptor is usually Pyruvate or its derivative.

*Rules are always meant to be broken!




Pasteur Effect: ~20X more biomass when aerated
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Figure 9.9 Reoxidation of NADH During Fermentati NADH
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