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All major types of nutrition and metabolism evolved among prokaryotes:
they are the ultimate biochemists

The prokaryotes exhibit some unique modes of nutrition as well as every type
of nutrition found in eukaryotes.

Major Modes of Nutrition:

Prokaryotes exhibit a great diversity in how they obtain the necessary resources
(energy and carbon) to synthesize organic compounds.

= Some obtain energy from light (phototrophs), while others use
chemicals taken from the environment (chemotrophs).

= Many can utilized CO, as a carbon source (autotrophs) and others
require at least one organic nutrient as a carbon source (heterotrophs).
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Depending upon the energy source AND the carbon source, prokaryotes have
four possible nutritional modes:

1. Photoautotrophs: Use light energy to synthesize organic
compounds from CO, — Includes the cyanobacteria. (Actually all
photosynthetic eukaryotes fit in this category.)

2. Chemoautotrophs: Require only CO, as a carbon source and
obtain energy by oxidizing inorganic compounds. This mode of
nutrition is unique only to certain prokaryotes.

3. Photoheterotrophs: Use light to generate ATP from an organic
carbon source. This mode of nutrition is unique only to certain
prokaryotes.

4. Chemoheterotrophs: Must obtain organic molecules for energy
and as a source of carbon. Found in many bacteria as well as most

eukaryotes.
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Redox Rxns:  Hx=>=2e +2H"
Electron-donating half reaction

%02 + 26 > 02-

Electron-accepting half reaction

2H + 0° > HO
Formation of water
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Two Ways to Make ATP: Quick & Dirty or
Turbo-Charged
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Cellular Locations for Energy Pathways
in Eukaryotes and Prokaryotes
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MNAD"® + CoA Pyruvate™ {three carbons)
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(1) Substrate-level GDP + P,—~GTP
phosphorylation GTP + ADP—- GDP + ATP

15 ATP
(2) Electron transport 4 NADH =12 ATP
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Citric Acid Cycle
aka TCA cycle

The short form!
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The heme part of a cytochrome, the elegant porphyrin ring!
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Electron transport chain in aerobic bacterium
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Figure 2 How rotation of the v subunit drives
catalysis. During ATP synthesis, rotation of the v
subunil causes sequential changes in the B
subunits. A rotatien of 120° changes the B
subunit that binds ADP and Pt a form with
tightly bound ATP. The subunit with tightly
bound ATP then changes to a form that releases
ATPE and the third subunit prepares to bind
another ADP and P,

F1 Subunit Topview

ATP Synthase acts as
a rotary motor turning
in 120 degree steps.

Table 9.2  ATP Yield from the Aerobic Oxidation
of Glucose by Eucaryotic Cells

Glycolytic Pathway
Substral ‘el phosphorylation (ATP)
Oxidative phosphorylation with 2 NADH

2 Pyruvate to 2 Acetyl-CoA
Oxidative phosphorylation with 2 NADH

-level phosphorylation (GTP)
phosphorylation with 6 NADH
Oxidative phosphorylation with 2 FADH,

Total Aerobic Yield

2 ATP
6 ATP

6 ATP
2ATP
1% ATP
4 ATP

38 ATP

“ATF yiclds are calewlated with an assumed PO ratio of 3.0 for NADH and 2.0 for FADH ..

Fermentation — Key Features

(1) Substrate-level phosphorylation is the rule*.

(2) Always anaerobic (even when some O, might be around).

(3) No externally supplied terminal electron acceptor.

Many types.... 2 major themes

(1) NADH+H* gets oxidized to NAD*

(2) Electron acceptor is usually Pyruvate or its derivative.

*Rules are always meant to be broken!
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Pasteur Effect: ~20X more biomass when aerated
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& Chntrium
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Stickland reaction: Clostridium using amino acids
for substrate-level phosphorylation
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