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All major types of nutrition and metabolism evolved among prokaryotes:
they are the ultimate biochemists

The prokaryotes exhibit some unique modes of nutrition as well as every type
of nutrition found in eukaryotes.

Major Modes of Nutrition:

Prokaryotes exhibit a great diversity in how they obtain the necessary resources
(energy and carbon) to synthesize organic compounds.

= Some obtain energy from light (phototrophs), while others use
chemicals taken from the environment (chemotrophs).

= Many can utilized CO, as a carbon source (autotrophs) and others
require at least one organic nutrient as a carbon source (heterotrophs).
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Depending upon the energy source AND the carbon source, prokaryotes have
four possible nutritional modes:

1. Photoautotrophs: Use light energy to synthesize organic
compounds from CO, — Includes the cyanobacteria. (Actually all
photosynthetic eukaryotes fit in this category.)

2. Chemoautotrophs: Require only CO, as a carbon source and
obtain energy by oxidizing inorganic compounds. This mode of
nutrition is unique only to certain prokaryotes.

3. Photoheterotrophs: Use light to generate ATP from an organic
carbon source. This mode of nutrition is unique only to certain
prokaryotes.

4. Chemoheterotrophs: Must obtain organic molecules for energy
and as a source of carbon. Found in many bacteria as well as most
eukaryotes.
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Oxidation and Reduction are Coupled Reactions

Reduced 6 Oxidized
compound A A B compound B
(reducing 6 (oxidizing
agent) agent)
Oxidized A eB Reduced
compound A @ compound B

A is oxidized, B is reduced,

losing electrons gaining electrons

Redox Rxns:  He=>2e +2H°
Electron-donating half reaction

10, + 267> 0%

Electron-accepting half reaction

oH" + O° - H,0
Formation of water

Electron P Electron
donor—H, + 1O, > H,0 acceptor

Net reaction




Examples of reactions
with H, as e™ donor

(1) Hy+ fumarate®” — succinate®™

AG” = -86 kJ

(2) H,+NO,” — NO,” + H,0
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Thermodynamics: The Chemical Fuels and Oxidants of Life
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Flavin nucleotides, components
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Acetyl-coenzyme A (acety
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Two Ways to Make ATP: Quick & Dirty or
Turbo-Charged

(a) Substrate-level phosphorylation
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(b) Oxidative phosphorylation

7 1 Cellular Locations for Energy Pathways
. in Eukaryotes and Prokaryotes

EUKARYOTES

PROKARYOTES

External to mitochondrion
Glycolysis
Fermentation

Inside mitochondrion
Inner membrane
Pyruvate oxidation
Respiratory chain
Matrix
Citric acid cycle

In cytoplasm
Glycolysis
Fermentation
Citric acid cycle

On inner face
of plasma membrane

Pyruvate oxidation
Respiratory chain

10



Glucose

=2 ATP= Two ATP molecules used for
each glucose molecule.

Fructose-1,6-bisphosphate

Glycolysis: short form
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Glycolysis aka
Embden-Meyerhof
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NAD* + CoA Pyruvate™ (three carbons)
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Overall
reaction: Pyruvate™ + 4 NAD* + FAD—> 3 CO, + &
(1) Substrate-level GDP + P,—>~ GTP
phosphorylation GTP + ADP—- GDP + ATP

15 ATP
(2) Electron transport 4 NADH =12 ATP
phosphorylation FADH =2 ATP
(8) Sum: CAC plus glycolysis —> 38 ATP per glucose

(®)
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Change in free energy, AG (in keal /mol)
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Electron Transport
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The heme part of a cytochrome, the elegant porphyrin ring!
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Electron transport chain in aerobic bacterium
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Protons pass through
channel formed by Fy
polypeptides...

Qutside of cell @

Cell membrane

...Fy uses energy

ATP Synthase
Structure & Function

derived from this
proton flow to
synthesize ATP.
Cytoplasm
. .- . F1 Subunit Topview
p - s B &
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1/ .
\ y a rotary motor turning
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B
ATP

Figure 2 How rotation of the v subunit drives

catalysis. During ATP synthesis, rotation of the

subunit causes sequential changes in the B
subunits. A rotation of 120° changes the p
subunit that binds ADF and P, to a form with
tightly bound ATP The subunit with tightly

bound ATP then changes to a form that releases

ATP, and the third subunit prepares to bind
another ADP and P,




‘Table9.2  ATP Yield from the Aerobic Oxidation
7 of Glucose by Eucaryotic Cells

Glycolytic Pathway
Substrate-level phosphorylation (ATP) 2 ATP?
Oxidative phosphorylation with 2 NADH 6 ATP
2 Pyruvate to 2 Acetyl-CoA
Oxidative phosphorylation with 2 NADH 6 ATP
Tricarboxylic Acid Cycle
Substrate-level phosphorylation (GTP) 2 ATP
Oxidative phosphorylation with 6 NADH 18 ATP
Oxidative phosphorylation with 2 FADH, 4 ATP
Total Aerobic Yield 38 ATP

“ATP yields are calculated with an assumed P/O ratio of 3.0 for NADH and 2.0 for FADH ,.

Fermentation — Key Features

(1) Substrate-level phosphorylation is the rule*.

(2) Always anaerobic (even when some O, might be around).
(3) No externally supplied terminal electron acceptor.

Many types.... 2 major themes

(1) NADH+H* gets oxidized to NAD*

(2) Electron acceptor is usually Pyruvate or its derivative.

*Rules are always meant to be broken!
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Pasteur Effect: ~20X more biomass when aerated

Respiration  Gjucose Fermentation Glucose
Air —
¥
=
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2CO, o

+ 2 Acetaldehyde
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0, HO

Yeést,.éera.ted Yeast, anaerobic

Glycolysis Glucose

Glyceraldehyde -3-(P)
NAD NAD'

NADH + H NADH + H
1,3-bisphosphoglycerate

P
Fermentation NADH + H yruvate

pathways NAD

Lactate X NADH +H
NAD

Y

Figure 9.9 Reoxidation of NADH During Fermentation. NADH
from glycolysis is reoxidized by being used to reduce pyruvate or a
pyruvate derivative (X). Either lactate or reduced product Y result.
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Figure 9.10  Some Common Microbial Fermentations.
Only pyruvate fermentations are shown for the sake of
nic molecules can be

(1] I:(Jg 9

\.nnplum many 01.I1¢r - Lactate Pyruvate Aoglaluenyae —lb Ethanol
fermented. Most of these pathways have been simplified
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1. Lactic acid bacteria (Streptococcus, Laclobacilius), Bacillus

2. Yeast, Zymomanas

3. Propionic acid bacteria (f
4. Enterobacter, Serratia, Bacilus
5. Enteric bacteria i . 5 lfa, Proteus)

B. Clostridium
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2 Acetaldehyde
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(b) Lactic acid fermentation

Proprionic Acid Fermentation

Pyruvate  cw,-co-coon —/—,,—@T\\—— HOOC—CH,—CO—COOH  QAA

2 [HJ«{@ @-2MH
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Prop CoA CH; MM CoA

Cod-Transferase

Fig. 8.3. Methylmalonyl-CoA pathway of propionate formation.

Enzymes: (1) lactate dehydrogenase; (5) fumarate reductase (leading to
{2) methylmalonyl-CoA carboxy- regeneration of ATP by proton
transferase; (3) malate dehydrogenase; translocation); (6) CoA transferase;

(4) Mumarase; (7) methylmalonyl-CoA mutase,

HOOC — CH=CH—COOH Fum

HOOC—CH,—CHp—COOH  SUCC




(a) Mixed acid fermentation (for example, Escherichia coli) Typical products (molar amounts)

Glucose —eoss Pyruvate

Methyl Red Test

(b) Butanediol fermentation (for example, Enterobacter) Typical products (molar amounts)
— 2,3-Butanediol + CO, Acldlu:.l: : geutral
002': Hy
—= Ethanol 5:1

—> Lactate
Glucose —2225__ pyryvate —

--> Succinate

--> Acetate

—— 0’02+ H2

Voges-Proskauer Test
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Clostridial Fermentations

Pyruvate

4 2P,
2 CH,—CHO 2 [cHy—co~scoa] —— —" 2 [CH3—COOH
CoA
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lr CGA% Thiclase Fromy
2 |CH3—CHa0H CH3—CO—CH,—00~SCoA CH3—CO—CH,;—COOH
Ethanol Acetoagetyl-CoA Acetoacetate
f2-Hydroxy-
2 [“1‘{ butyryt-Cad-DH
CH3 —CHOH—CH, —CO~SCoA CH3—CO—CH3
f3- Hydroxybutyryl -CoA Acetone
2[H]
H,O*{Crcmnase }(
CH3—CHy—CHy—CH20H CHy —CH=CH—CO~SCoA CH3—CHOH—CH3
Butanol Crotonyl-CoA 2 -Propanol
2 lhl'i e '“‘\{5”"”"“"""“” Acetyl~CoA
2 [H] Acetate
CH3=CHy—CH~CHO  =———p——— CH3~CHz ~CHy—CO~5CoA N G5~ GHz —CHz—COOH
Butyraldehyde CoA Butyryl-CoA Butyrate

Fig. 8.4. The formation of acetate, ethanol, n-butanol, butyrate, acetone,
and 2-propanol during clostridial fermentations.
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@ The unusual fermentations of succinate and oxalate
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- Oxalate<~

H'l-

1 Formate/Oxalate
antiporter
Out
H+
ATPase —
In
ADP Pi
(b) The unusual fermentations of succinate and oxalate

Stickland reaction: Clostridium using amino acids
for substrate-level phosphorylation

...two glycine molecules

(‘Alanine is oxidized, and... ) | are reduced.

// CHy— COO"
CHy— CH—COO"
Alanine |

“NH; NH,*

o

NADH C|H a

N~ '
1 Glycine
CHy— tl} — oo ?
o -
) ,—-—-\‘ NAD : CHy;— COO"
LLl
pr : NADH }/‘ NH,
Y o
CHy— (:f 3
| S Gal | ! Glycine
“NH,
High energy
bond between Phosphate group is
the acetyl transferred from acetyl
group and -0 phosphate to ADP.
coenzyme A.
2 ATPi| Overall:

Alanine + 2 glycine + @# ADE —=
3 acetate + CO, + BNH,* +ZATP =
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