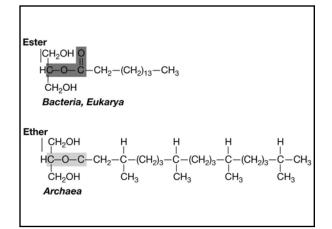
Microbial Taxonomy

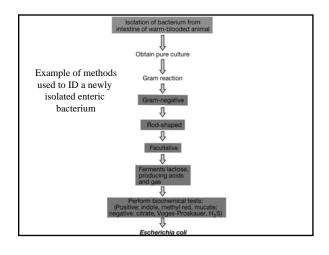
Traditional taxonomy or the **classification** through **identification** and **nomenclature** of microbes, both "prokaryote" and eukaryote, has been in a mess – we were stuck with it for traditional reasons.

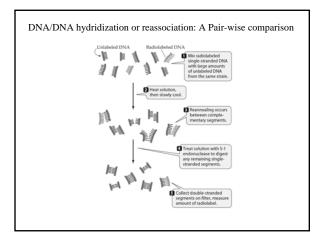
A "natural" taxonomy would be based on evolutionary relatedness: Thus, organisms in same "genus" (a collection of "species") would have similar properties in a fundamental sense.

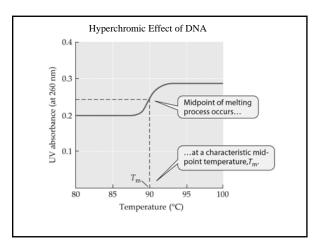
A natural taxonomy of macrobes has long been possible: Large organisms have many easily distinguished features (e.g., body-plans and developmental processes, that can be used to describe hierarchies of relatedness).

Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

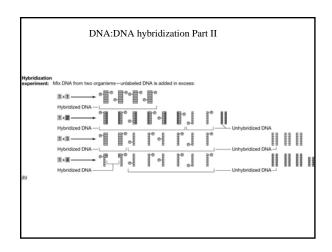

Recent advances in **molecular phylogeny** have changed this picture. We now have a relatively quantitative way to view **biodiversity**, in the context of phylogenetic maps or evolutionary trees.

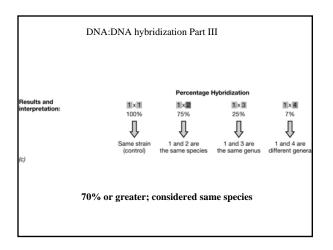

Slowly evolving molecules (e.g., rRNA) used for large-scale structure; "fast- clock" molecules for fine-structure.

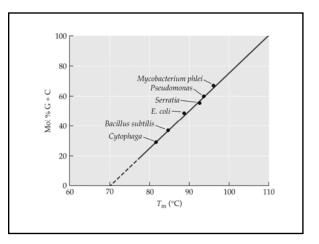

The literature language (e.g., "species") and formal nomenclature, however, remain solidly rooted in the tradition of Linnaeus at this time. (You have to call them something!)

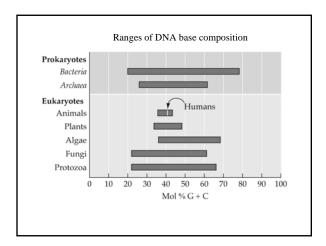

Table 17.1 Hierarchical classification of the bacterium Spirochaeta plicatilis Taxon Name Domain Bacteria Phylum Spirochaetes (vernacular name: spirochetes) Class **Spirochaetes** Order Spirochaetales Family Spirochaetaceae Spirochaeta Genus Species plicatilis

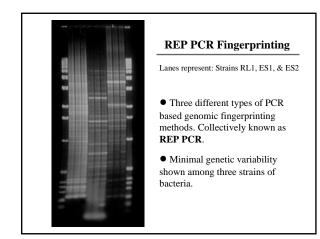
	Some phenotypic characteristics of taxonomic value		
Major category	Components		
I. Morphology	Shape; size; Gram reaction		
II. Motility	Motile by flagella; motile by gliding; motile by gas vessels; nonmotile		
III. Nutrition and physiology	Mechanism of energy conservation (phototroph, chemoorganotroph, chemolithotroph); relationship to oxygen; temperature, pH, and salt requirements/tolerances; ability to use various carbon, nitrogen, and sulfur sources		
IV. Other factors	Pigments; cell inclusions, or surface layers; pathogencity; antibiotic sensitivity		

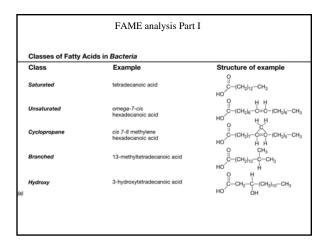


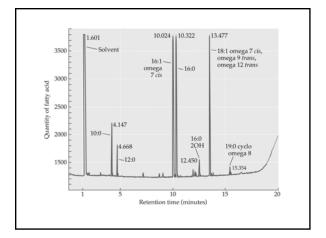


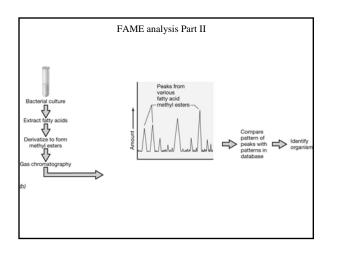


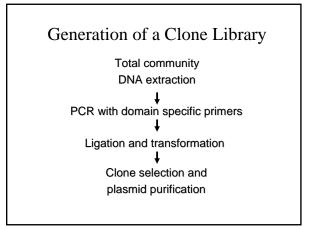


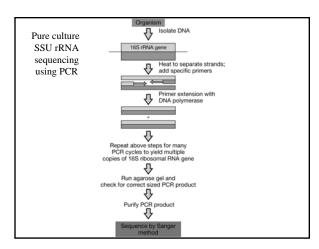


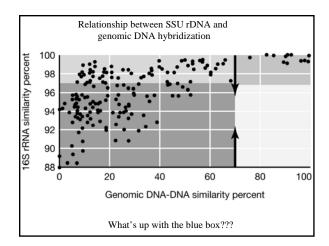




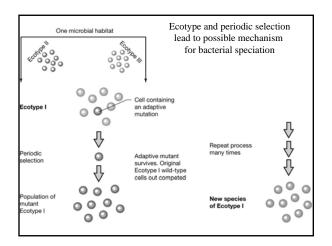


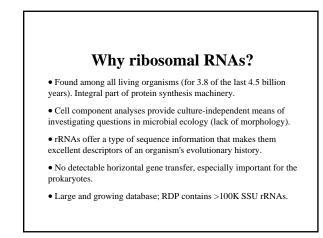

Taxonomy Summary

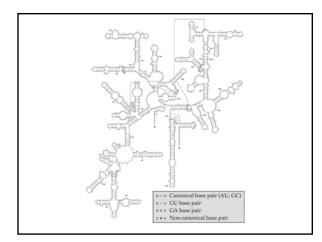

Classical physiological descriptions of microbes constitute a taxonomy, but do not provide relationships (except as might be inferred subjectively). *Key Words: Classification, Identification & Nomenclature.*

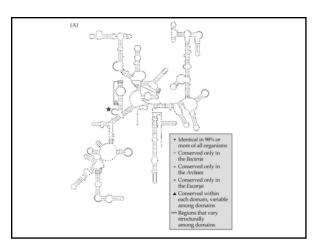

Methods such as FAME, DNA-DNA hybridization, or REP PCR establish relationships, but only if close, i.e., they are not sufficiently general to be broadly applicable.

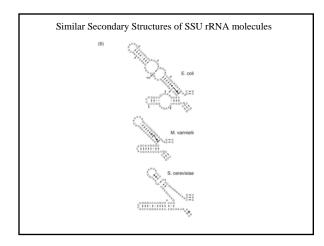
All these methods require pure-cultivation of organisms for characterization, but we can't cultivate much of what is out there.

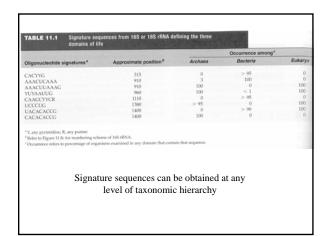


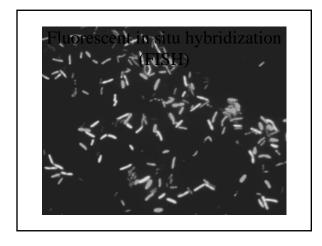


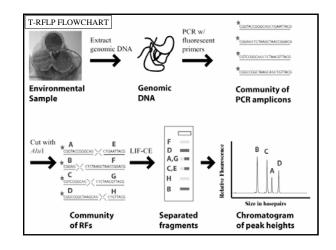


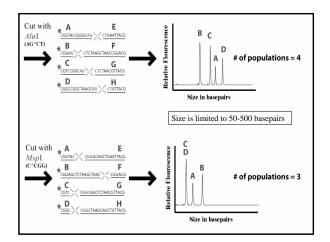

TABLE 11.6	Taxonomic ranks and numbers of known prokaryotic species ^a			
	Bacteria	Archaea	Total	
Domains	1	1	2	
Phyla	23	3ª	26	
Classes	32	8	40	
Orders	77	12	89	
Families	182	21	203	
Genera	871	69	941	
Species	5007	217	5224	
*Numbers represe Archaea as of 2001 Source: Garrity, G.	ent validly named ge . "Korarchaeota" is a M., Boone, D.R., and	enera and species of B a provisional phylum I R.W. Castenholz (ed gy, 2d ed., Vol. 1. Sprij	<i>acteria</i> and .s.). 2001.	

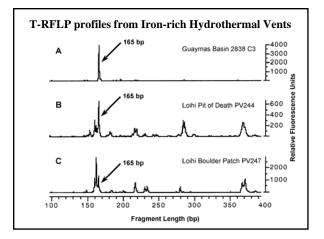

Table 17.2Comparison of <i>E. coli</i> and its primate host species ^a					
Property	E. coli	Homo sapiens	Primates		
Mol % G + C	48-52	42	42^b		
16S–18S rRNA variability	>15 bases	?	<16°		
DNA/DNA reassociation	>70%	98.6% ^d	>70% ^e		

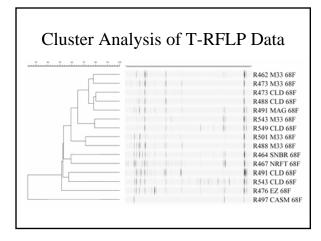


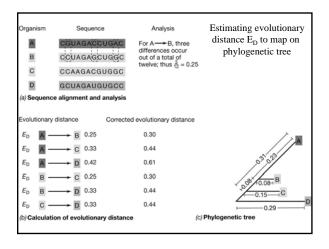


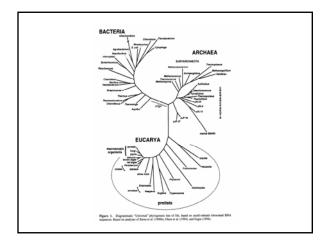


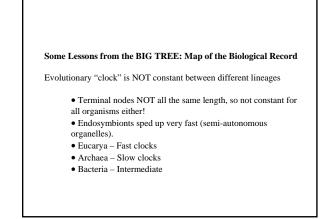


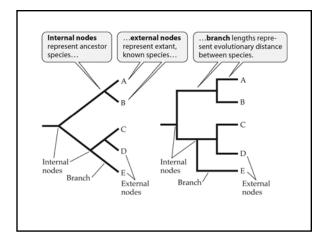


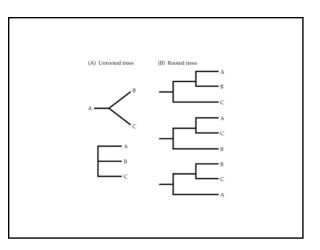


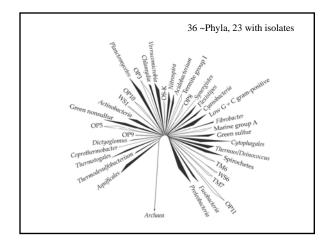


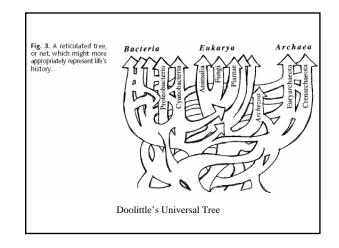


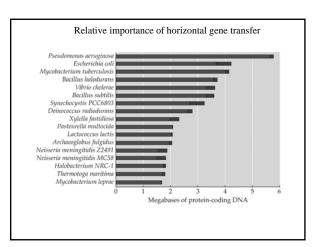


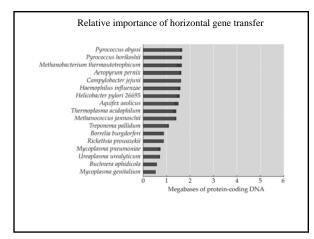











... the general course of evolution [for bacteria] will probably never be known, and there is simply not enough objective evidence to base their classification on phylogenetic grounds... For these and other reasons, most modem taxonomists have explicitly abandoned the phylogenetic approach.


(Stanier et al., 1976)

Molecular phylogeneticists will have failed to find the "true tree," not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot property be represented as a tree."

(W. F. Doolittle, 1999)

A Bit on the Evolution of Evolutionary Thought

A. Prior to the late 19th century, the concept of evolution was on the **evolutionary ladder**. Thus, we still deal in "higher and lower" eucaryotes (I try not to use these terms – they are dumb), "missing links," and "primitive" organisms.

B. In its milieu, *E. coli* is as highly evolved as are we. *E. coli* is **simple** (\sim 5x10⁶ bp genome), we are **complex** (\sim 3x10⁹ bps); complexity has nothing to do with *evolutionary advancement*.

C. Lineages evolve by diversification, not progression. !!!

D. There is no such thing as a *primitive* organism alive today. **Simple**, yes, but still a finely honed product of ~4 billion years under the selective hammer of the niches that it and its progenitors have occupied.

- Phylogeny is right or wrong, we try to infer it the best we can.
- Taxonomy is useful or not, depending upon your point of view.
- Phylogeny allows us to ask testable questions, e.g., hypothesis testing.