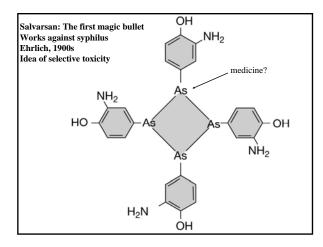
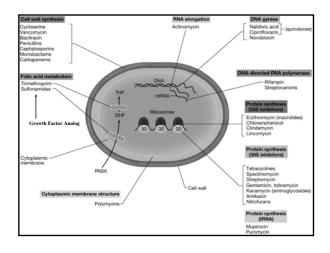

Semi-synthetic



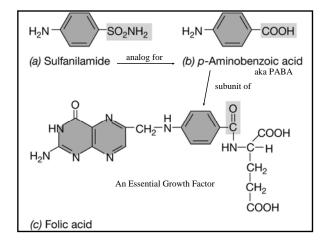


Antibiotics Affecting Replication, Transcription, & Translation

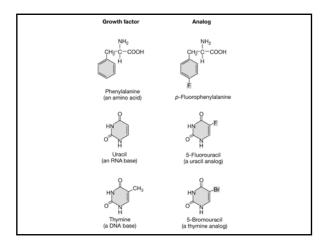
DNA replication:

Nalidixic Acid & Novobiocin - Inhibits DNA gyrase

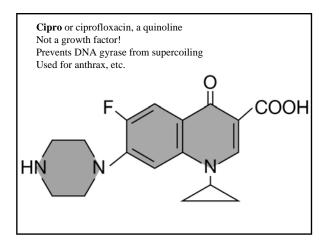
Transcription:

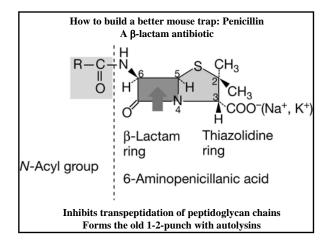

Rifampin – Beta subunit of RNA polymerase Actinomycin – DNA binding, blocks elongation

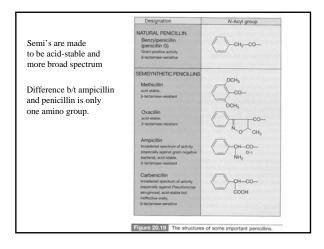
Translation:

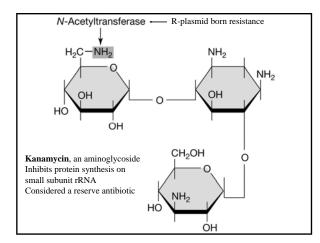

Г

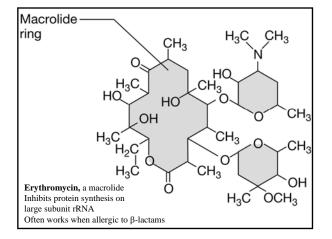
Streptomycin – Blocks initiation on SSU of ribosome Chloramphenicol – Blocks elongation on LSU via peptide bond Tetracycline – Blocks elongation SSU Cycloheximide – Eucarya ribosome specific Diptheria Toxin – EF blocker; both Archaea and Eucarya

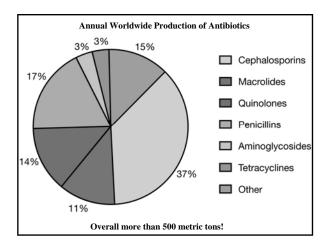

Eukaryotes		Bacteria		Obligately par	asitic Bacteria	Vir	uses
Fungi	Mycobacteria	Gram-negative Bacteria	Gram-positive Bacteria	Chlamydia	Rickettsia ←──→	RNA viruses	DNA viruse
Azoles Allylamines Cycloheximide Polyenes	Tobramycin Penicillins Suttonamides Cephalosporins Streptomycin Quinolones					reverse-tr	bitors
Polyoxins Nucleic acid analogs	Isoniazid	Polymyxins	Tetra Vancomycin	cycline		Nucleosi Inte	de analo rferon



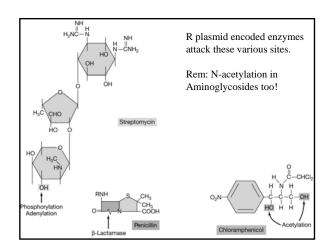








$\begin{array}{c c} H_3C, CH_3 \\ H_4 & R_2 R_3 & R_1 H \\ H_4 & H_2 R_3 & R_1 H \\ H_4 & H_2 & H_3 & H_4 \\ H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 \\ H_4 & H_4 & H_4 & H_4 & H_4 & H_4 & H_4 \\ H_4 & H_4 \\ H_4 & H_$					
Tetracycline analog	R ₁	R ₂	R ₃	R ₄	
Tetracycline	н	ОН	CH_3	н	
7-Chlortetracycline (aureomycin)	н	ОН	CH_3	CI	
5-Oxytetracycline (terramycin)	ОН	ОН	CH_3	н	



Mechanisms of Antibiotic Resistance

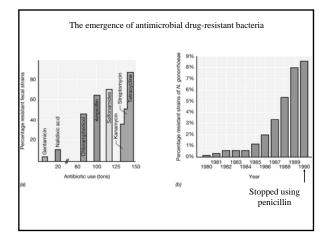
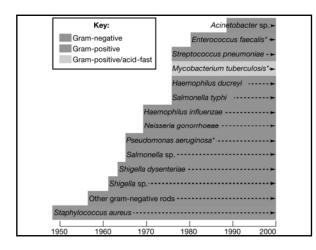
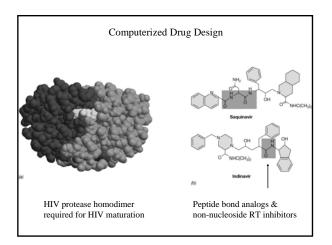
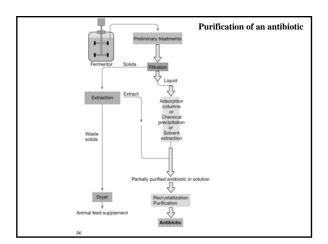
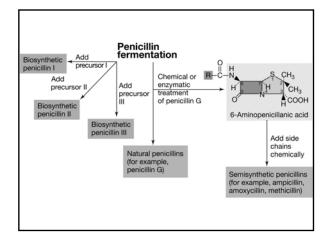

- Lacks structure antibiotic inhibits: Mycoplasms lack a typical cell wall
- 2. Impermeable to the antibiotic: Gram - bacteria impermeable to penicillin G
- Alteration of antibiotic: β-lactamase degrades antibiotic e.g., springs open the mouse trap
- 4. Modifies the target of the antibiotic
- 5. Genetically modifies the pathway that the antibiotic affects
- 6. Efflux of the antibiotic: Tetracycline gets pumped back out of the cell

TABLE 20.7 Mect	nanisms of bacterial resistan	ice to antibiotics	
Resistance mechanism	Antibiotic example	Genetic basis of resistance	Mechanism present in:
Reduced permeability	Penicillins	Chromosomal	Pseudomonas aerugin Enteric Bacteria
Inactivation of antibiotic (for example, penicillinase; modifying enzymes	Penicillins	Plasmid and chromosomal	Enteric bacteria Staphylococcus aureus Enteric Bacteria Neisseria gonorrhoeae
methylases, acetylases, and phosphorylases;	Chloramphenicol	Plasmid and chromosomal	Staphylococcus aureus Enteric Bacteria
and others)	Aminoglycosides	Plasmid	Staphylococcus aureus
Alteration of target (for example,	Erythromycin	Chromosomal	Staphylococcus aureus
RNA polymerase, rifamycin;	Rifamycin		Enteric Bacteria
ribosome, erythromycin, and	Streptomycin		Enteric Bacteria
streptomycin; DNA gyrase, quinolones)	Norfloxacin		Enteric Bacteria
Quinotones) Development of resistant	Sulfonamides	Chromosomal	Staphylococcus aureus Enteric Bacteria
biochemical pathway	Suitonamides	Chromosomai	Staphylococcus aureus
Efflux (pumping out of cell)	Tetracyclines	Plasmid	Enteric Bacteria
cannot (painpaig out of cen)	Chloramphenicol	Chromosomal	Staphylococcus aureus
			Bacillus subtilis

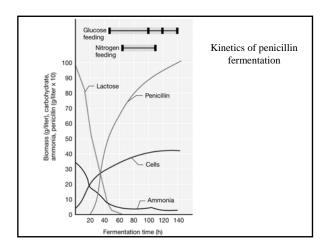





Microbial Sources of Antil	Microbial Sources of Antibiotics			
<u>Microorganism</u> Bacteria: <i>Streptomyces</i> spp.	<u>Antibiotic</u> chloramphenicol erythromycin kanamycin			
Bacillus spp.	rifampin streptomycin tetracyclines bacitracin			
Fungi: Penicillium spp.	polymyxin penicillin			
Cephalosporium spp.	cephalosporins			


Production of Antibiotics:

Secondary Metabolites produced near the end of a bacterium or fungus life cycle:


- 1. Formed @ end of stationary phase of growth
- 2. Not essential for growth or viability
- 3. Formation depends upon the media, possible over production

