BIOLOGY 345 FINAL EXAM - 9 June 2005

PART I. Multiple choice questions – (4 points each, 32 points total). Single best answer!

- 1. Which following enzyme causes a modification to the original theory regarding the flow of information as it relates to the central dogma?
 - A. DNA directed RNA polymerase
 - B. reverse transcriptase
 - C. Aminoacyl-tRNA synthetase
 - D. DNA gyrase
 - E. restriction endonuclease
- **2.** Which of these following microorganisms is a member of the domain *Archaea*?
 - A. Escherichia coli
 - B. Bacteroides vulgatus
 - C. Lactobacillus acidophilus
 - D. Streptococcus mutans
 - E. Methanococcus vanneilii
- **3.** Which of the following is the most common population of microorganisms found in throughout the entire gastrointestinal tract of humans (lower numbers in stomach)?
 - A. Escherichia coli
 - B. Bacteroides vulgatus
 - C. Lactobacillus acidophilus
 - D. Streptococcus mutans
 - E. Methanococcus vanneilii
- 4. An organism that is capable of fixing carbon using only CO_2 , using H_2 as its sole electron donor (an energy source), and O_2 as its sole electron acceptor, would be best described as which of the following:
 - A. photoautotroph
 - B. chemoautotroph
 - C. photoheterotroph
 - D. chemoheterotroph
 - E. mixotroph

- **5.** Consider the unidirectional exchange of genetic information in microorganisms. Which of the following does not fit this general model of transmission?
 - A. transformation
 - B. specialized transduction
 - C. generalized transduction
 - D. conjugation
 - E. transcription
- **6.** A deadly viral disease that has been completely eradicated (except for a couple of top-secret freezers) is which of the following?
 - A. lyme disease
 - B. plague
 - C. anthrax
 - D. chicken pox
 - E. small pox
- 7. High energy thioester bonds such as that used in acetyl-CoA are also known as sulfoanhydride bonds, which of the following metabolic processes are capable using this type of bond inside the cell?
 - A. Reduction reactions
 - B. Generation of amino acid charged tRNAs
 - C. Production of ATP
 - D. Peptide bond formation
 - E. All of the above
- 8. An organism that is capable of using acetate as a carbon source, using light as its primary energy source, sulfide and/or thiosulfide as an electron donor, and SO_4^{2-} as its electron acceptor, would be best described as which of the following:
 - A. photoautotroph
 - B. chemoautotroph
 - C. photoheterotroph
 - D. chemoheterotroph
 - E. mixotroph

PART II. Matching – (90 points total).

	Balanced Growth	A. Lag Phase
	Cryptic Growth	B. Log Phase
	Retooling with new enzymes	C. Stationary Phase
	Autolysins are abundant	D. Death phase
	Doubling times are shortest	
	Viable counts (CFUs) > Turbidity	y counts (OD ₆₀₀)
	Turbidity counts (OD ₆₀₀) > Viable	e counts (CFUs)
	I left my plate of <i>E. coli</i> in the 37	°C incubator for over a week.
	A chemostat at equilibrium with	high "μ" is most like?
-	Indicate if the following characteric (en D o), or both exotoxins and endo	toxins (<u>B</u> oth).
endotoxins omy	Toxins that are more easily inacti	vated by heat.
endotoxins only	·	vated by heat. lipid A component of the LPS laye
	·	lipid A component of the LPS laye
Indotoxins only	Toxins that are comprised of the Toxins that are among the most le	lipid A component of the LPS laye
ndotoxins omy	Toxins that are comprised of the Toxins that are among the most le	lipid A component of the LPS layer that substances known. eneral systemic effects including for the LPS layer.

in prokar	each) Consider the following types of control yotes: Quorum Sensing, Signal Transduct ontrol that is associated with the following sor each, i.e., QS, ST or Att).	tion & Attenuation. Name the specific		
	Uses diffusible autoinducers like	e homoserine lactones.		
	Uses three components to regula	te porins in Escherichia coli.		
	Uses a leader sequence downstre	 Uses a leader sequence downstream from the operator. Used to control the lux operon in <i>Vibrio fisheri</i>. Uses feedback from translation to control transcription. 		
	Used to control the lux operon in			
	Uses feedback from translation t			
	Uses a sensor kinase to transmit	_ Uses a sensor kinase to transmit environmental cues.		
` -	each) Considering key enzymes associated in the right column with a key enzyme in the ATP synthase	<u>-</u>		
	PFK (phosphofructokinase)	B. TCA or Krebs cycle		
	Succinate dehydrogenase	C. Electron Transport System		
	Cytochrome oxidase	D. Calvin cycle		
	Pyruvate kinase	E. Fermentation		
	Pyruvate kinase Alcohol dehydrogenase	E. FermentationF. Ox/photo phosphorylation		
	·	F. Ox/photo phosphorylation		
	Alcohol dehydrogenase	F. Ox/photo phosphorylation		

PART III. Short answer questions – (Number of points in parentheses, 48 points total).		
13.	(6 points) Name two different enzymes that help detoxify when using O_2 as a terminal electron acceptor (make sure to include which reactants AND products that are used for each enzyme you choose)?	
14.	(6 points) If you were a phototrophic bacteria with ferrodoxin in your membrane, what special feature does this indicate that you are capable of doing?	
15.	Give a specific example of a virulence factor that represents invasiveness AND another that represents toxigenicity . Also, what is it that "in the end makes you sick" (i.e., causes disease)?	
16.	(6 points) What are two very different metabolic pathways that use reverse electron flow	

and ultimately what is the metabolic goal each is used for?

17.	(6 points) The evolutionary advancement of the porphyrin ring was paramount to the development of what three major metabolic pathways AND what was the resulting molecular structure and corresponding metal is used in each?
18.	(6 points) Briefly, what is the mode of action for the cholera enterotoxin. What type of therapy is most effective in treating this disease?
19.	(6 points) Name and briefly describe three different mechanisms of antibiotic resistence used among bacteria.
20.	(6 points) Name and briefly describe the mechanism of antibiotic mode of action that occurs when a bacterium is sensitive to penicillin . Briefly, how is growth affected?

PART IV. Short Essay – (30 points total).

21. (15 points) Consider the **global carbon cycle** in terms of the amount of CO₂ that exists within the atmosphere. (A) Describe why, on an annual basis, atmospheric CO₂ is cyclic in terms of what seasons correspond to the maximal and minimal levels, AND (B) why there is a greater deviation of atmospheric CO₂ in the northern hemisphere, AND (C) what microbial metabolisms are of primary importance to relative levels of atmospheric CO₂ in terms of contributing the annual highs and lows?

22. (15 points) Consider the metabolic menu of microorganisms. (A) Compare and contrast the primary sources of energy, electrons, and carbon for the metabolic processes collectively known as aerobic respiration (heterotrophic) and chemolithotrophic metabolism(s). You should pick a specific pathway for each to make your point. (B) Describe which of these pathways are considered to be the "best" in terms of efficiency and ATP production AND (C) which of these pathway(s) preceded the other in terms of evolutionary occurrence regarding free-living bacteria and what evidence can you use to support your claim?