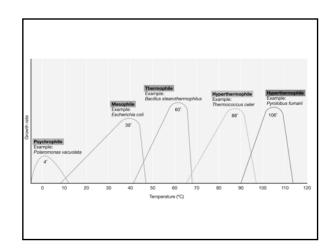
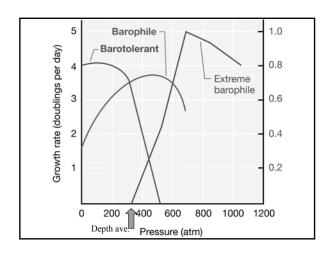
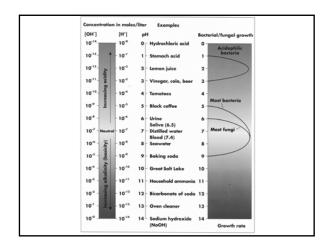

# Microbial Growth


#### **Environmental Forcing Functions:**

- Temperature: Psychrophile, Mesophile, Thermophile, & Hyperthermophile
   Cardinal Temps: Min\*, Max, & Optimal\*
   Q<sub>10</sub> Rule: 10°C rise will double the growth rate\*
- Pressure: Barophiles (Most are also psychrophiles!) Found only in the deep ocean.....so far


| Species                     | Range (°C |
|-----------------------------|-----------|
| Psychrophiles               |           |
| Cytophaga psychrophila      | 4-20      |
| Bacillus insolitus          | <0-25     |
| Aquaspirillum psychrophilum | 2-26      |
| Mesophiles                  |           |
| Escherichia coli            | 10-40     |
| Lactobacillus lactis        | 18-42     |
| Bacillus subtilis           | 22-40     |
| Pseudomonas fluorescens     | 4-40      |
| Thermophiles                |           |
| Bacillus thermoleovorans    | 42-75     |
| Thermoleophilum album       | 45-70     |
| Thermus aquaticus           | 40-79     |
| Chloroflexus aurantiacus    | 45-70     |
| Hyperthermophiles (Archaea) |           |
| Hyperthermus butylicus      | 85-108    |
| Methanothermus fervidus     | 65-97     |
| Pyrodictium occultum        | 80-110    |
| Thermococcus celer          | 70-95     |

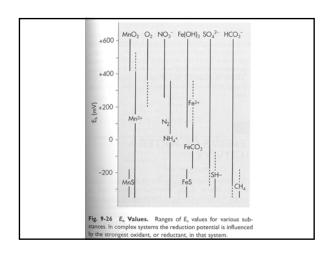


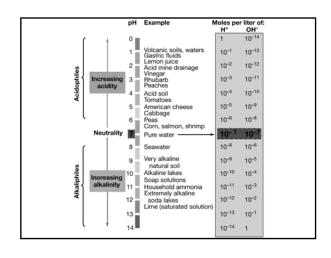


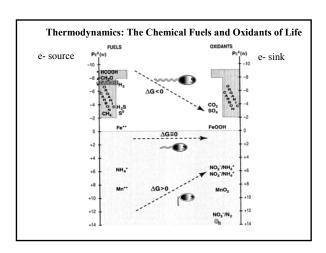








## Microbial Growth

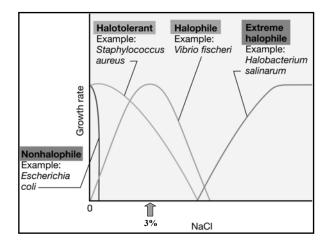

#### **Environmental Forcing Functions:**

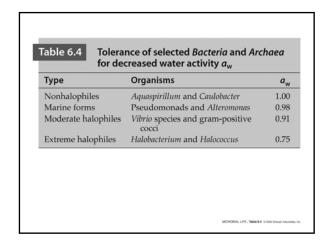
- pH: acidophiles & alkaliphiles cytoplasm still near neutral
- eH: available electron donors & terminal electron acceptors

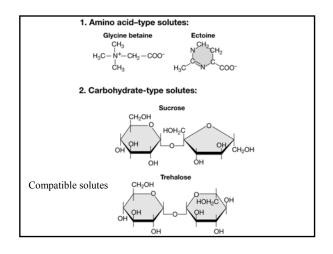
affects the chemistry of the environment

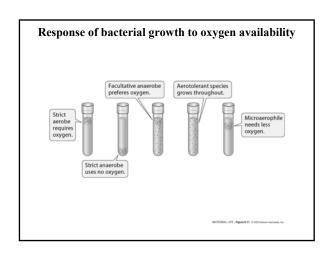


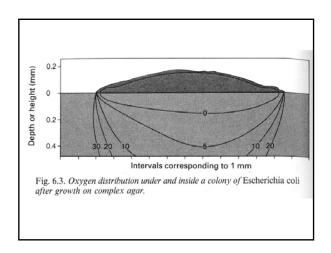


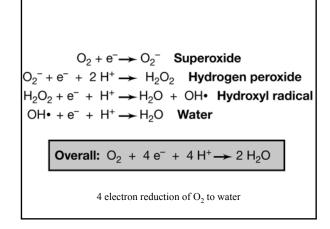




### Microbial Growth

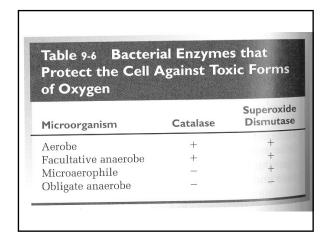

### **Environmental Forcing Functions:**


- Salt: Halophiles
   Compatible solutes: amino acid derivatives (e.g., proline & glycine)
- Water Activity: Xerophiles (live in very dry habitats)
   All microbes are osmotrophs, must use organic
   material in solution!
- Oxygen Usage: aerobe, facultative (an)aerobe, microaerophile, obligate anaerobe
   DeTox enzymes: Catalase, Peroxidase, SOD


| 3. Alcohol-t                | ype solutes:                          |                                                 |  |  |  |
|-----------------------------|---------------------------------------|-------------------------------------------------|--|--|--|
|                             | <b>Glycerol</b><br>CH <sub>2</sub> OH | <b>Mannitol</b><br>ÇH₂OH                        |  |  |  |
| Compatible solutes          | ¢нон                                  | но-¢-н                                          |  |  |  |
|                             | Ċн₂ОН                                 | но−¢−н                                          |  |  |  |
|                             |                                       | н-¢-он                                          |  |  |  |
|                             |                                       | н-¢-он                                          |  |  |  |
|                             |                                       | Ċн₂ОН                                           |  |  |  |
| 4. Other:                   |                                       |                                                 |  |  |  |
| Dimethylsulfoniopropionate: |                                       |                                                 |  |  |  |
|                             | CH₃                                   | O                                               |  |  |  |
|                             | H <sub>3</sub> C−\$−CH <sub>2</sub>   | <sub>2</sub> CH <sub>2</sub> C - O <sup>-</sup> |  |  |  |



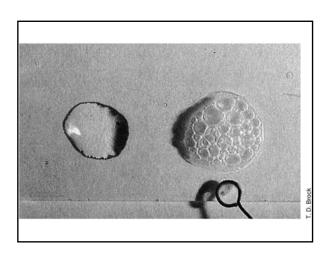











| Table 9-5 Electronic States of Oxygen          |             |                                       |                               |  |
|------------------------------------------------|-------------|---------------------------------------|-------------------------------|--|
| Form                                           | Formula     | Simplified<br>Electronic<br>Structure | Spin of<br>Outer<br>Electrons |  |
| Triplet oxygen<br>(normal<br>atmospheric form) | $^3O_2$     | Ö—Ö                                   | <b>(1)</b>                    |  |
| Singlet oxygen  Nasty!                         | $^{1}O_{2}$ | Ó—Ó                                   | ① ① ①                         |  |
| Superoxide free radical                        | $O_2^-$     | Ö—Ö                                   |                               |  |
| Peroxide                                       | $O_2^{2-}$  | Ö—Ö                                   | (11) (11)                     |  |

(a) Catalase:  

$$H_2O_2 + H_2O_2 \rightarrow 2 H_2O + O_2$$
  
(b) Peroxidase:  
 $H_2O_2 + NADH + H^+ \rightarrow 2 H_2O + NAD^+$   
(c) Superoxide dismutase:  
 $O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$   
(d) Superoxide dismutase/catalase in combination:  
 $4 O_2^- + 4 H^+ \rightarrow 2 H_2O + 3 O_2$   
(e) Superoxide reductase:  
 $O_2^- + 2 H^+ + cyt c_{reduced} \rightarrow H_2O_2 + cyt c_{oxidized}$ 

