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The redox cycle
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Fig. 23. The microbial carbon cycle. The role of sulfate in the oxidation of methane is largely
hypothetical,
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H, +2 4H, Meth: 131 Fig. 22. A comparison between C, § and N oxidation/reductions. The most reduced and the
CHu+2H0 —=CO; + : ethanogen  +13 most oxidized compounds of the C, S and N cycles are arranged in pairs, separated by a distance
24+ 4 H +— HS" - - which represents an & ¢~ difference between the extremes. Given vertically are the G for the
S 2t H * SH:D Sulsismedicer =168 oxidation, by Oy, of the reduced form. There is a decreasing energy yield through the series C,
Sum: 50,2 + CH, —= HCO4 ™ + HS™ trophic 25 S to M which is represented by the vertical distance between the oxidized and the reduced forms.
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illustrate the decrease in reducing potential through the se_ries Hs, CH,. H35 to NH, and the
) increase in oxidizing petential through the series COy, SO, NOj 10 Oy,




Key Processes and Prokaryotes in the Sulfur Cycle

Process Organisms
Sulfide/sulfur oxidation (H,5 —= 5"—= 50 *)
Aerobic Sulfur chemolithotrophs
(Thiobacillus, Beggiatoa, many others)
Anaerobic Purple and green phototrophic

bacteria, some chemolithotrophs
Sulfate reduction (anaerobic) ( SO, —H,S)
Desulfovibrio, Desulfobacter,

Sulfur reduction (anaerobic) ( §"—=H,S)
Desulfuromonas, many
hyperthermophilic Archaea
Sulfur disproportionation ($,0;7— H,S + SO,*)
Desulfovibrio, and others
Organic sulfur compound oxidation or reduction (CH;SH-=CO, + H,5)
(DMSO =DMS)

Desulfurylation (organic-S—=H,5)
Many organisms can do this
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